Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)A=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\sqrt{5}+3+\sqrt{3}-\left(\sqrt{5}+3\right)\\ =\sqrt{3}\)
\(b)B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2\\ =\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\\ =2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\\ =2\left(25-21\right)=8\)
\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}\)
\(=\left|\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right|+\left|\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right|\)
\(=\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\)
\(=2.\sqrt{\frac{7}{2}}\)
\(=\sqrt{14}\)
Chúc bạn học gỏi và tíck cho mìk vs nha!
a: \(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1-1}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}\)
=0
b: \(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}=\dfrac{2\sqrt{7}}{2}=\sqrt{7}\)
c: \(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)
a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)
\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)
b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)
\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)
c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
làm nốt 2 câu cuối nhé, cách làm y trên
d/\(\sqrt{9+4\sqrt{5}}\)
= \(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)
=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)
= \(\left|2+\sqrt{5}\right|\)
= \(2+\sqrt{5}\)
e/ \(\sqrt{21+4\sqrt{5}}\)
= \(\sqrt{20+4\sqrt{5}+1}\)
=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)
=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)
= \(\left|2\sqrt{5}+1\right|\)
= \(2\sqrt{5}+1\)
a) \(\sqrt{5+\sqrt{21}}-\sqrt{6-\sqrt{35}}\) = \(\dfrac{\sqrt{10+2\sqrt{21}}}{\sqrt{2}}-\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}\)
= \(\dfrac{\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}{\sqrt{2}}\)
= \(\dfrac{\sqrt{7}+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{2}}\) = \(\dfrac{\sqrt{7}+\sqrt{3}-\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{2}}\)
= \(\dfrac{\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\)
câu b) hình như đề sai
a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
Đặt BT trên là A
Ta có :
\(A^2=5-\sqrt{21}+5+\sqrt{21}+2\sqrt{(5-\sqrt{21})\left(5+\sqrt{21}\right)}\)
\(=10+2\sqrt{25-21}\)
\(=10+2.\sqrt{4}=10+2.2=14\)
\(\Rightarrow A=\sqrt{14}\)
Ta có:
\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
\(=\sqrt{\left(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\right)^2}\)
\(=\sqrt{5-\sqrt{21}+2\sqrt{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}+5+\sqrt{21}}\)
\(=\sqrt{10+2\sqrt{25-21}}\)
\(=\sqrt{10+2\sqrt{4}}=\sqrt{10+4}=\sqrt{14}\)