Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\2x-5=b\end{matrix}\right.\) \(\Rightarrow4x^2-15x+20=b^2+5a^2\)
Phương trình trở thành:
\(\sqrt{b^2+5a^2}=2b+7a\) (\(2b+7a\ge0\))
\(\Leftrightarrow b^2+5a^2=\left(2b+7a\right)^2\)
\(\Leftrightarrow44a^2+28ab+3b^2=0\)
\(\Leftrightarrow\left(22a+3b\right)\left(2a+b\right)=0\)
- Nếu \(22a+3b=0\Rightarrow b=-\frac{22}{3}a\Rightarrow2a+7b=2a-7.\frac{22}{3}a< 0\left(l\right)\)
- Nếu \(2a+b=0\Rightarrow b=-2a\Rightarrow2b+7a=5a>0\) thỏa mãn
Khi đó ta có:
\(2a=-b\Leftrightarrow2\sqrt{x-1}=5-2x\) (\(x\le\frac{5}{2}\))
\(\Leftrightarrow4\left(x-1\right)=\left(5-2x\right)^2\)
\(\Leftrightarrow4x^2-24x+29=0\Rightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{7}}{2}\left(l\right)\\x=\frac{6-\sqrt{7}}{2}\end{matrix}\right.\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=3+\sqrt{5}\)
Để VT = VP => x = 2
vậy x = 2 là nghiệm của pt
theo mk thì chỗ bình phương 2 vế của bạn chỉ cần bằng luôn 4x+4 chứ k cần giá trị tuyệt đối, còn ở fong cuối bạn nên thêm (TMĐK) vào sau kết quả
nên bỏ ý 4 vì ngay ở ĐKXĐ đã có nên có thể bỏ ý đó đi
Câu 1:
\(\sqrt{33-8\sqrt{7}}=\sqrt{33-2\cdot\sqrt{112}}\)
Câu 2:
\(\Leftrightarrow2\sqrt{x}-3\sqrt{x}+8\sqrt{x}=18\)
\(\Leftrightarrow7\sqrt{x}=18\)
=>căn x=18/7
hay x=324/49
- \(\Leftrightarrow x^2-\sqrt{100}=0\Leftrightarrow x^2=10\Leftrightarrow x=\orbr{\begin{cases}x=\sqrt{10}\\x=-\sqrt{10}\end{cases}}\)
- \(\Leftrightarrow\sqrt{5^2\left(2x+1\right)^2}=10\Leftrightarrow5|2x+1|=10\Leftrightarrow|2x+1|=2\) vây
- nếu \(x\ge\frac{-1}{2}\) \(\Leftrightarrow2x+1=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
- nếu\(x< \frac{-1}{2}\Leftrightarrow2x+1=-2\Leftrightarrow x=\frac{-3}{2}\left(tm\right)\)kết luận nghiệm