Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{2}}{\sqrt{6}}\)=\(\frac{\sqrt{2}}{\sqrt{2}\sqrt{3}}\)=\(\frac{1}{\sqrt{3}}\)
\(\sqrt{\frac{2}{6}=}\frac{\sqrt{3}}{3}\)
\(\sqrt{81}=9\)
\(\sqrt{\frac{81}{27}}=\sqrt{3}\)
\(\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}\)
\(\sqrt{32}=4\sqrt{2}\)
\(\sqrt{42}=\sqrt{42}\)
\(\sqrt{18}=3\sqrt{2}\)
Làm bừa chả biết có đúng không nữa
\(\sqrt{1}\)=1
\(\sqrt{4}\)=2
....
\(\sqrt{100}\)=10
=> A= 1+2+...+10=55
Ta có: A =\(\sqrt{1}+\sqrt{4}+\sqrt{9}+...+\sqrt{81}+\sqrt{100}\)
= \(\sqrt{1^2}+\sqrt{2^2}+\sqrt{3^2}+...+\sqrt{9^2}+\sqrt{10^2}\)
= |1| + |2| + |3| + ...+ |9| + |10|
= 1 + 2 + 3 + 4 +...+ 9 + 10
= 55
ĐK: \(x\ge1\)
Ta có:
\(\sqrt{4x-4}+\sqrt{25x-25}+\sqrt{81x-81}=1\)
\(\Rightarrow\sqrt{4\left(x-1\right)}+\sqrt{25\left(x-1\right)}+\sqrt{81\left(x-1\right)}=1\)
\(\Rightarrow2\sqrt{x-1}+5\sqrt{x-1}+9\sqrt{x-1}=1\)
\(\Rightarrow16\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{4}\\x-1=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
\(\sqrt{81.16.169}=\sqrt{81}.\sqrt{16}.\sqrt{169}=9.4.13=468\)
\(\sqrt{10}.\sqrt{810}=\sqrt{10.10}.\sqrt{81}=10.9=90\)
\(\sqrt{64}.\sqrt{81.100}-\sqrt{64}.\sqrt{196.16}=\sqrt{64}\left(\sqrt{81}.\sqrt{100}-\sqrt{196}.\sqrt{16}\right)=8.\left(9.10-14.4\right)=8.34=272\)
a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)
b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)
c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)
d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)
a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(=\sqrt{16\cdot25}+\sqrt{196:49}\)
\(=20+2=22\)
b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)
\(=36:\sqrt{324}-\sqrt{169}\)
\(=36:18-13=2-13=-11\)
c) \(\sqrt{\sqrt{81}}\)
\(=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}\)
\(=\sqrt{9+16}=\sqrt{25}=5\)
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)
\(=4.5+14:7\)
\(=20+2=22\)
b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)
\(=36:18-13=-11\)
c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)
2.Ta có : \(4\sqrt{3+2\sqrt{2}}-\sqrt{56\sqrt{2}+81}\)
\(=4\sqrt{2+2\sqrt{2}+1}-\sqrt{56\sqrt{2}+81}\)
\(=4\sqrt{2}+4-\sqrt{56\sqrt{2}+81}\)
\(=4\sqrt{2}+4-\sqrt{7^2+2.4\sqrt{2}.7+\left(4\sqrt{2}\right)^2}\)
\(=4\sqrt{2}+4-7-4\sqrt{2}=4-7=-3\)
3.Ta có : \(\frac{x-49}{\sqrt{x}-7}\)
\(=\frac{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}{\sqrt{x}-7}=\sqrt{x}+7\)
4.Ta có : \(\sqrt{x+2\sqrt{x+1}}\)
\(=\sqrt{x+1+2\sqrt{x+1}+1-1}\)
\(=\sqrt{\left(\sqrt{x+1}+1\right)^2-1}\)
5.Ta có : \(\sqrt{x-1-2\sqrt{x-2}}\)
\(=\sqrt{x-2-2\sqrt{x-2}+1}\)
\(=\sqrt{\left(\sqrt{x-2}-1\right)^2}=\left|\sqrt{x-2}-1\right|\)
\(\sqrt[4]{81}=3\)
x . x . x . x = 81
suy ra x = 3
chứ còn gì
dễ thế