K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

Điều kiện $x\geq 1$.

  • Nếu x>2 thì VT>6>VP
  • Nếu x<2 thì VT<6<VP

Vậy phương trình có nghiệm duy nhất x=2

31 tháng 12 2015

4885leuleu

NV
8 tháng 3 2020

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}=-x^2+4x-2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|=2-\left(x-2\right)^2\)

Ta có: \(VP=2-\left(x-2\right)^2\le2\)

\(VT=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại x thỏa mãn

Vậy pt vô nghiệm

11 tháng 3 2020

tks b nha

18 tháng 1 2016

vào chttt

8 tháng 9 2017

A nhà bnhihi

a: \(-x^2+x+6=-\left(x-3\right)\left(x+2\right)\)

b: Đa thức này ko phân tích được nhé bạn