Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(pt\Leftrightarrow\left(\sqrt{3x^2-7x+3}-1\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3x^2-5x-1}-1\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)
\(\Leftrightarrow\dfrac{3x^2-7x+3-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\dfrac{3x^2-5x-1-1}{\sqrt{3x^2-5x-1}+1}-\dfrac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)
\(\Leftrightarrow\dfrac{3x^2-7x+2}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x^2-5x-2}{\sqrt{3x^2-5x-1}+1}+\dfrac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(3x-1\right)}{\sqrt{3x^2-7x+3}+1}-\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x-1}+1}+\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)
Dễ thấy: \(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0
\(\Leftrightarrow\sqrt{12-7x}-\sqrt{x^2-x}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(\Rightarrow-\sqrt{3x^2-5x-1}-\sqrt{x^2-x}+\sqrt{x^2-3x+4}+\sqrt{12-7x}=0\)
=>\(x\approx-3,4579061804411\)
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
Để giải phương trình này, ta cần tách các căn bậc hai ra khỏi biểu thức. Hãy xem xét từng phần tử trong phương trình:
√3x^2 - 7x + 3 - √x^2 - 2 = √3x^2 - 5x - 1 - √x^2 - 3x + 4
Để tách căn bậc hai ra khỏi biểu thức, chúng ta có thể đặt:
A = √3x^2 - 7x + 3 B = √x^2 - 2 C = √3x^2 - 5x - 1 D = √x^2 - 3x + 4
Khi đó, phương trình trở thành:
A - B = C - D
Tiếp theo, ta sẽ bình phương cả hai phía của phương trình:
(A - B)^2 = (C - D)^2
(A - B)(A - B) = (C - D)(C - D)
Mở rộng và rút gọn phương trình, ta được:
A^2 - 2AB + B^2 = C^2 - 2CD + D^2
Thay A, B, C, D bằng giá trị đã định nghĩa ban đầu:
(√3x^2 - 7x + 3)^2 - 2(√3x^2 - 7x + 3)(√x^2 - 2) + (√x^2 - 2)^2 = (√3x^2 - 5x - 1)^2 - 2(√3x^2 - 5x - 1)(√x^2 - 3x + 4) + (√x^2 - 3x + 4)^2
Tiếp theo, ta sẽ giải phương trình đã thu gọn:
3x^2 - 7x + 3 - 2√3x^2 - 7x + 3√x^2 - 2 + x^2 - 2x + 1 = 3x^2 - 5x - 1 - 2√3x^2 - 5x - 1√x^2 - 3x + 4 + x^2 - 6x + 9
Rút gọn và sắp xếp lại các thành phần của phương trình, ta được:
(2√3 + 2)√x^2 - 2 - (2√3 + 2)√x^2 - 3x + 4 = -2x + 7
Tiếp theo, ta sẽ loại bỏ các căn bậc hai:
-2√3 - 2 = -2x + 7
Tiếp tục rút gọn và giải phương trình, ta được:
-2√3 = -2x + 9
2x = 9 + 2√3
x = (9 + 2√3) / 2
Vậy, giá trị của x là (9 + 2√3) / 2.