K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)

Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)

\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)

8 tháng 4 2018

4)\(ĐK:x\ge-\dfrac{1}{3}\)

\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)

Vậy pt có 2 nghiệm là x=1 và x=5

18 tháng 4 2018

1) x-\(\sqrt{2x-5}\)=4

ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x\ge4\end{matrix}\right.\)=> x\(\ge\)4

x-\(\sqrt{2x-5}\)=4<=> x-4=\(\sqrt{2x-5}\)

bình phương hai vế:

\(x^2-8x+16\) =2x-5

<=>\(x^2\) -10x+21=0 <=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

2) \(2x^2-3-5\sqrt{2x^2+3}=0\)(*)

ĐK:\(2x^2-3>0\Leftrightarrow x^2>\dfrac{3}{2}\)

<=>\(\left[{}\begin{matrix}x>\sqrt{\dfrac{3}{2}}\\x< -\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

(*)<=>

16 tháng 4 2018

cau 2 là bằng 0 ko phải bằng 5 nha

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

26 tháng 2 2020

a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)

Phương trình trở thành: \(x^3+1=2a\left(2\right)\)

Trừ theo vế (1) và (2):

a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x

\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)

26 tháng 2 2020

b)ĐKXĐ:\(x\in R\)

pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)

Xét x=0 ko là nghiệm của pt(loại)

x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)

Khi đó ta sẽ tìm được các nghiệm của pt