Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)
\(A=\sqrt{4+\sqrt{15}}-\sqrt{4-\sqrt{15}}-\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{5+2\sqrt{5}.\sqrt{3}+3}-\sqrt{5-2\sqrt{5}.\sqrt{3}+3}-\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}-\sqrt{3}+1}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(B=\sqrt{9-2\sqrt{14}}+\sqrt{9+2\sqrt{14}}=\sqrt{7-2\sqrt{7}.\sqrt{2}+2}+\sqrt{7+2\sqrt{7}.\sqrt{2}+2}=\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}=2\sqrt{7}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}.\sqrt{3}+3}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)
\(D=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3+2\sqrt{3}+1}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3-2\sqrt{3}+1}}=\dfrac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-\sqrt{6}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}=\dfrac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)
\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)
\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ
\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)
\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)
\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)
#Học tốt ạ
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
a)\(\sqrt{45}:\sqrt{80}\)
= \(\sqrt{45:80}\)
=\(\sqrt{9:16}\)
= \(\sqrt{9}:\sqrt{16}\)
= \(\frac{3}{4}\)
b)\(\sqrt{\frac{3}{15}}:\sqrt{\frac{36}{45}}\)
= \(\sqrt{\frac{1}{5}}:\sqrt{\frac{4}{5}}\)
= \(\sqrt{\frac{1}{5}.\frac{5}{4}}\)
= \(\sqrt{\frac{1}{4}}\)
=\(\frac{1}{2}\)
c)\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}\)
= \(\left(7\sqrt{4^2.3}+3\sqrt{3^2.3}-2\sqrt{2^2.3}\right):\sqrt{3}\)
=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)
=28+9-4
=33
d) \(\sqrt{\frac{125}{245}}\)
= \(\sqrt{\frac{25}{49}}\)
= \(\frac{\sqrt{25}}{\sqrt{49}}\)
= \(\frac{5}{7}\)
2.1
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)
2.2
\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)
\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)
$\Rightarrow B=\sqrt{2}$
Bài 1:
1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)
2.
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)
\(A=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
=> \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{4+2\sqrt{3}}\)
=> \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
=> \(A=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)
=> \(A=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)
=> \(A=4\sqrt{3}-8+6-4\sqrt{3}\)
=> \(A=-8+6=-2\)
VẬY \(A=-2\)
\(B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
=> \(B=\sqrt{8-2\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
=> \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\)
=> \(B=\left(\sqrt{5}-\sqrt{3}\right)^2\left(4+\sqrt{15}\right)\)
=> \(B=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
=> \(B=32+8\sqrt{15}-8\sqrt{15}-30\)
=> \(B=2\)
VẬY \(B=2\)
\(\sqrt{24536786>4952}\)
\(\sqrt{245>15}\)
\(\sqrt{24536786>4952}\)
\(\sqrt{245>15}\)