Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
Lời giải:
Ta có:
\(\text{VT}=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=\frac{1.2.3....31}{2.4.6.8...64}\)
Xét mẫu số:
\(2.4.6.8.....62.64=(2.1)(2.2)(2.3)(2.4)....(2.31)(2.32)\)
\(=2^{32}(1.2.3....31.32)\)
Suy ra:
\(\text{VT}=\frac{1.2.3....31}{2^{32}.(1.2.3...31.32)}=\frac{1}{2^{32}.32}=\frac{1}{2^{37}}\)
Do đó \(4^x=\frac{1}{2^{37}}\Leftrightarrow 2^{2x}=\frac{1}{2^{37}}\Leftrightarrow 2^{2x+37}=1\)
\(\Leftrightarrow 2x+37=0\Leftrightarrow x=-\frac{37}{2}\)
Vậy \(x=\frac{-37}{2}\)
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
a)x=1;2;-2(bạn nên tự giải)
b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x
=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)
=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x
=>x = 1/7680
c)=>4x - 2x = 6x - 3x
=>2x (2x-1)= 3x(2x-1)
=> 2x = 3x
=>x = 0
Giải:
a) \(\dfrac{1}{4}+x-\dfrac{1}{4}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4}+\dfrac{3}{4}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{3}{4}x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy ...
b) \(\left|x^2-2x\right|+\left|x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x^2-2x\right|=0\\\left|x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow x=0\)
Vậy ...
c) \(\left|3x^2-2x\right|=x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=x\\3x^2-2x=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2=3x\\3x^2=x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-3x=0\\3x^2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\left(x-1\right)=0\\x\left(3x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Giải:
a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)
\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)
\(\Leftrightarrow x=-\dfrac{79}{210}\)
Vậy \(x=-\dfrac{79}{210}\).
b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)
\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)
\(\Leftrightarrow3x=\dfrac{67}{75}\)
\(\Leftrightarrow x=\dfrac{67}{75}:3\)
\(\Leftrightarrow x=\dfrac{67}{225}\)
Vậy \(x=\dfrac{67}{225}\).
Chúc bạn học tốt!
CÁC BẠN GIÚP MK NHA!!!
NGÀY MAI MK NỘP BÀI RỒI
AI TRẢ LỜI NHANH NHẤT
CHÍNH XÁC NHẤT VÀ RÕ RÀNG
THÌ MK TICK CHO NHA!!!
NHỚ TRẢ LỜI NHANH GIÙM MK NHA
\(=\dfrac{-1}{3}\left(16+\dfrac{3}{5}-13-\dfrac{3}{5}\right)+\dfrac{3}{4}=\dfrac{-1}{3}\cdot3+\dfrac{3}{4}=-1+\dfrac{3}{4}=-\dfrac{1}{4}\)
= 390326,9437