K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

\(\sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}=\sqrt{\dfrac{25}{16}.\dfrac{49}{9}.\dfrac{1}{100}}=\sqrt{\dfrac{25}{16}}.\sqrt{\dfrac{49}{9}}.\sqrt{\dfrac{1}{100}}=\dfrac{5}{4}.\dfrac{7}{3}.\dfrac{1}{10}=\dfrac{5.7.1}{4.3.10}=\dfrac{35}{120}=\dfrac{7}{24}\)

\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}=2\)

a: \(=\sqrt{\dfrac{25}{16}\cdot\dfrac{49}{9}\cdot\dfrac{1}{100}}=\dfrac{5}{4}\cdot\dfrac{7}{3}\cdot\dfrac{1}{10}=\dfrac{35}{120}=\dfrac{7}{24}\)

b: \(=\sqrt{1.44\cdot0.81}=1.2\cdot0.9=1.08\)

c: \(=\sqrt{\dfrac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\dfrac{1}{4}\cdot289}=\dfrac{17}{2}\)

d: \(=\sqrt{\dfrac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}=\sqrt{\dfrac{225}{841}}=\dfrac{15}{29}\)

26 tháng 7 2018

\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)

\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)

\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)

\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)

26 tháng 7 2018

\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)

\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)

\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)

\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)

<=> 1-5

=-4

15 tháng 7 2017

a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)

b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)

c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)

d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

31 tháng 3 2017

a) HD: Đổi hỗn số và số thập phân thành phân số.

ĐS: .

b) =

= = =

= .

d) ĐS: .

25 tháng 8 2017

_ \(\sqrt{\dfrac{9}{4}-\sqrt{2}}=\sqrt{\left(\sqrt{2}-\sqrt{\dfrac{1}{4}}\right)^2}=\left|\sqrt{2}-\dfrac{1}{2}\right|=-\dfrac{1}{2}+\sqrt{2}=\dfrac{-1+2\sqrt{2}}{2}\)

_ \(\sqrt{\dfrac{129}{16}+\sqrt{2}}\sqrt{\left(\sqrt{8}+\sqrt{\dfrac{1}{16}}\right)^2}=\left|2\sqrt{2}+\dfrac{1}{4}\right|=2\sqrt{2}+\dfrac{1}{4}=\dfrac{1+8\sqrt{2}}{4}\)

_ \(\sqrt{\dfrac{59}{25}+\dfrac{6}{5}\sqrt{2}}=\sqrt{\left(\sqrt{2}+\sqrt{\dfrac{9}{25}}\right)^2}=\left|\sqrt{2}+\dfrac{3}{5}\right|=\sqrt{2}+\dfrac{3}{5}=\dfrac{3+5\sqrt{2}}{5}\)

_

20 tháng 7 2017

\(\sqrt{1\dfrac{24}{25}\cdot5\dfrac{1}{16}\cdot0,01}\\ =\sqrt{\dfrac{49}{25}\cdot\dfrac{81}{16}\cdot\dfrac{1}{100}}\\ =\sqrt{\dfrac{49}{25}}\cdot\sqrt{\dfrac{81}{16}}\cdot\sqrt{\dfrac{1}{100}}\\ =\dfrac{7}{5}\cdot\dfrac{9}{4}\cdot\dfrac{1}{10}\\ =\dfrac{7\cdot9\cdot1}{5\cdot4\cdot10}\\ =\dfrac{63}{200}\)

20 tháng 7 2017

\(\sqrt{1\dfrac{24}{25}.5\dfrac{1}{16}.0,01}=\sqrt{\dfrac{49}{25}.\dfrac{81}{16}.0,01}\) = \(\sqrt{\dfrac{49}{25}}.\sqrt{\dfrac{81}{16}}.\sqrt{0,01}\)

= \(\dfrac{7}{5}.\dfrac{9}{4}.0,1=\dfrac{63}{200}\)

Bài 1: Tính

a) Ta có: \(\left(\sqrt{3}+2\right)^2\)

\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)

\(=3+4\sqrt{3}+4\)

\(=7+4\sqrt{3}\)

b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)

\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)

\(=-\left(2-2\sqrt{2}+1\right)\)

\(=-\left(3-2\sqrt{2}\right)\)

\(=2\sqrt{2}-3\)

Bài 2: Tính

a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)

\(=\frac{1}{2}\cdot10-\frac{5}{2}\)

\(=5-\frac{5}{2}\)

\(=\frac{5}{2}\)

b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\frac{2}{4}\cdot\frac{1}{5}\)

\(=\frac{1}{10}\)

Bài 3: So sánh

a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\)(Vì 18>12)

nên \(3\sqrt{2}>2\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)

\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)

\(=225-60\sqrt{10}+40\)

\(=265-60\sqrt{10}\)

\(=135+130-60\sqrt{10}\)

Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)

Ta có: \(130-60\sqrt{10}\)

\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)

\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)

\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)

\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)

\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)

hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

9 tháng 9 2020

phần a của 3 bài đều easy mà cả 3 bài đều easy

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai