Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}=\sqrt{\dfrac{25}{16}.\dfrac{49}{9}.\dfrac{1}{100}}=\sqrt{\dfrac{25}{16}}.\sqrt{\dfrac{49}{9}}.\sqrt{\dfrac{1}{100}}=\dfrac{5}{4}.\dfrac{7}{3}.\dfrac{1}{10}=\dfrac{5.7.1}{4.3.10}=\dfrac{35}{120}=\dfrac{7}{24}\)
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}=2\)
a: \(=\sqrt{\dfrac{25}{16}\cdot\dfrac{49}{9}\cdot\dfrac{1}{100}}=\dfrac{5}{4}\cdot\dfrac{7}{3}\cdot\dfrac{1}{10}=\dfrac{35}{120}=\dfrac{7}{24}\)
b: \(=\sqrt{1.44\cdot0.81}=1.2\cdot0.9=1.08\)
c: \(=\sqrt{\dfrac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\dfrac{1}{4}\cdot289}=\dfrac{17}{2}\)
d: \(=\sqrt{\dfrac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}=\sqrt{\dfrac{225}{841}}=\dfrac{15}{29}\)
\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)
\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)
\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)
\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)
\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)
\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)
\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)
<=> 1-5
=-4
a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}=\sqrt{\dfrac{25}{81}}.\sqrt{\dfrac{16}{49}}.\sqrt{\dfrac{196}{9}}=\dfrac{5}{9}.\dfrac{4}{7}.\dfrac{14}{3}=\dfrac{40}{27}\)
b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}=\sqrt{\dfrac{49}{16}.\dfrac{64}{25}.\dfrac{196}{81}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{64}{25}}.\sqrt{\dfrac{196}{81}}=\dfrac{7}{4}.\dfrac{8}{5}.\dfrac{14}{9}=\dfrac{196}{45}\)
c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}=\sqrt{\dfrac{640.34,3}{567}}=\sqrt{\dfrac{64.49}{81}}=\dfrac{\sqrt{64}.\sqrt{49}}{\sqrt{81}}=\dfrac{8.7}{9}=\dfrac{56}{9}\)
d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}=\sqrt{21,6.810.\left(11^2-5^2\right)}=\sqrt{216.81.\left(11+5\right)\left(11-5\right)}=\sqrt{36^2.9^2.4^2}=36.9.4=1296\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
_ \(\sqrt{\dfrac{9}{4}-\sqrt{2}}=\sqrt{\left(\sqrt{2}-\sqrt{\dfrac{1}{4}}\right)^2}=\left|\sqrt{2}-\dfrac{1}{2}\right|=-\dfrac{1}{2}+\sqrt{2}=\dfrac{-1+2\sqrt{2}}{2}\)
_ \(\sqrt{\dfrac{129}{16}+\sqrt{2}}\sqrt{\left(\sqrt{8}+\sqrt{\dfrac{1}{16}}\right)^2}=\left|2\sqrt{2}+\dfrac{1}{4}\right|=2\sqrt{2}+\dfrac{1}{4}=\dfrac{1+8\sqrt{2}}{4}\)
_ \(\sqrt{\dfrac{59}{25}+\dfrac{6}{5}\sqrt{2}}=\sqrt{\left(\sqrt{2}+\sqrt{\dfrac{9}{25}}\right)^2}=\left|\sqrt{2}+\dfrac{3}{5}\right|=\sqrt{2}+\dfrac{3}{5}=\dfrac{3+5\sqrt{2}}{5}\)
_
\(\sqrt{1\dfrac{24}{25}\cdot5\dfrac{1}{16}\cdot0,01}\\ =\sqrt{\dfrac{49}{25}\cdot\dfrac{81}{16}\cdot\dfrac{1}{100}}\\ =\sqrt{\dfrac{49}{25}}\cdot\sqrt{\dfrac{81}{16}}\cdot\sqrt{\dfrac{1}{100}}\\ =\dfrac{7}{5}\cdot\dfrac{9}{4}\cdot\dfrac{1}{10}\\ =\dfrac{7\cdot9\cdot1}{5\cdot4\cdot10}\\ =\dfrac{63}{200}\)
\(\sqrt{1\dfrac{24}{25}.5\dfrac{1}{16}.0,01}=\sqrt{\dfrac{49}{25}.\dfrac{81}{16}.0,01}\) = \(\sqrt{\dfrac{49}{25}}.\sqrt{\dfrac{81}{16}}.\sqrt{0,01}\)
= \(\dfrac{7}{5}.\dfrac{9}{4}.0,1=\dfrac{63}{200}\)
Bài 1: Tính
a) Ta có: \(\left(\sqrt{3}+2\right)^2\)
\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)
\(=3+4\sqrt{3}+4\)
\(=7+4\sqrt{3}\)
b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)
\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)
\(=-\left(2-2\sqrt{2}+1\right)\)
\(=-\left(3-2\sqrt{2}\right)\)
\(=2\sqrt{2}-3\)
Bài 2: Tính
a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)
\(=\frac{1}{2}\cdot10-\frac{5}{2}\)
\(=5-\frac{5}{2}\)
\(=\frac{5}{2}\)
b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\frac{2}{4}\cdot\frac{1}{5}\)
\(=\frac{1}{10}\)
Bài 3: So sánh
a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)
mà \(\sqrt{18}>\sqrt{12}\)(Vì 18>12)
nên \(3\sqrt{2}>2\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)
\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)
\(=225-60\sqrt{10}+40\)
\(=265-60\sqrt{10}\)
\(=135+130-60\sqrt{10}\)
Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)
Ta có: \(130-60\sqrt{10}\)
\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)
\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)
\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)
\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)
\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)
hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)