Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2}A=\sqrt{2}\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{2}\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{26+2\sqrt{2}+5.2\sqrt{1+2\sqrt{2}}}+\sqrt{26+2\sqrt{2}-5.2\sqrt{1+2\sqrt{2}}}\)
\(=\sqrt{5^2+2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}+\sqrt{5^2-2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}\)
\(=\sqrt{\left(\sqrt{1+2\sqrt{2}}+5\right)^2}+\sqrt{\left(\sqrt{1+2\sqrt{2}}-5\right)^2}\)
\(=\left|\sqrt{1+2\sqrt{2}}+5\right|+\left|\sqrt{1+2\sqrt{2}}-5\right|\)
\(=\sqrt{1+2\sqrt{2}}+5+5-\sqrt{1+2\sqrt{2}}=10\)
=> \(A=\frac{10}{\sqrt{2}}=5\sqrt{2}\)
A>0
\(A^2=26+2\sqrt{2}+2\sqrt{\left(13+\sqrt{2}\right)^2-25\left(1+2\sqrt{2}\right)}\)
\(=26+2\sqrt{2}+2\sqrt{171+26\sqrt{2}-25-50\sqrt{2}}\)
\(=26+2\sqrt{2}+2.\sqrt{144-2.12\sqrt{2}+2}\)
\(=26+2\sqrt{2}+2.\left(12-\sqrt{2}\right)\)
\(=50\)
\(A=\sqrt{50}=5\sqrt{2}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:
\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)
\(=10-9B\)
Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)
Vậy \(B=1\)
À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=\frac{\left(2\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{1}+\frac{\left(2-3\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\)
\(=3+\sqrt{2}+\frac{-7\sqrt{2}}{7}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
Mình đưa ra đáp án thôi nhé :)
a/ \(\left(\sqrt{\frac{5}{3}-\sqrt{\frac{3}{5}}}\right).\sqrt{15}=\sqrt{25-3\sqrt{15}}\)
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath