Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{12}+\sqrt{27}-\sqrt{3}\)
=\(\sqrt{4.3}+\sqrt{9.3}-\sqrt{3}\)
=\(\Leftrightarrow\)\(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\)
=\(4\sqrt{3}\)
=\(\sqrt{3}\left(\sqrt{4}+\sqrt{9}-1\right)\)
=\(\sqrt{3}\left(2+3-1\right)\)
=\(4\sqrt{3}\)
\(=\sqrt{2^2.3}+\sqrt{3^3}-\sqrt{3}=2\sqrt{3}+3\sqrt{3}-\sqrt{3}=4\sqrt{3}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=\sqrt{4.3}+\sqrt{9.3}-\sqrt{3}\)
\(=\sqrt{4}.\sqrt{3}+\sqrt{9}.\sqrt{3}-\sqrt{3}=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\)
\(=\left(2+3-1\right)\sqrt{3}=4\sqrt{3}\)
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)
\(=5-4-45=-44\)
Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Có : \(\sqrt{12}< \sqrt{16}=4\)
\(\sqrt{2016}< \sqrt{2025}\) => \(\sqrt{12}+\sqrt{2016}< 4+45\)
=> \(-\sqrt{12}-\sqrt{2016}>-49\)(1)
Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)
Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
Trả lời
\(\sqrt{12}+\sqrt{27}-\sqrt{3}\)
= \(4\sqrt{2}\)
hok tốt
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=2\sqrt{3}+3\sqrt{3}-\sqrt{3}=5\sqrt{3}-\sqrt{3}=4\sqrt{3}\)