K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

\(\sqrt{-2x^2+6}=x-1\left(đk:\sqrt{3}\ge x\ge1\right)\)

\(\Leftrightarrow-2x^2+6=x^2-2x+1\)

\(\Leftrightarrow3x^2-2x-5=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\)

4 tháng 9 2016

a/ Đặt \(\sqrt[3]{x+5}=a\)\(\sqrt[3]{x+6}=b\)

Từ đó PT <=> a + b = \(\sqrt[3]{a^3+b^3}\)

<=> a+ b+ 3ab(a+b) = a3 + b3

<=> 3ab(a+b) = 0

<=> a = 0 hoặc b = 0

Thế vào giải ra là tìm được nghiệm

4 tháng 9 2016
Câu b làm tương tự
4 tháng 4 2019

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)