Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
a, có vì số lẻ - số lẻ = số chẵn
b, có vì lẻ + lẻ - chẵn = chẵn
c, không vì 24a là số chẵn 10b cũng là số chẵn
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
Ta có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 ) + ( 2 3 + 2 4 ) + ( 2 5 + 2 6 ) + ( 2 7 + 2 8 ) + ( 2 9 + 2 10 ) + ( 2 11 + 2 12 )
= 2 ( 1 + 2 ) + 2 3 ( 1 + 2 ) + 2 5 ( 1 + 2 ) + 2 7 (1 + 2 ) + 2 9 (1 + 2 ) + 2 11 ( 1 + 2 )
= 2 .3 + 2 3 .3 + 2 5 .3 + 2 7 .3 + 2 9 .3 + 2 11 .3
= ( 2 + 2 3 + 2 5 + 2 7 + 2 9 + 2 11 ).3 chia hết cho 3
Ta lại có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 + 2 3 ) + ( 2 4 + 2 5 + 2 6 ) + ( 2 7 + 2 8 + 2 9 ) + ( 2 10 + 2 11 + 2 12 )
= 2 ( 1 + 2 + 2 2 ) + 2 4 ( 1 + 2 + 2 2 ) + 2 7 (1 + 2 + 2 2 ) + 2 10 ( 1 + 2 + 2 2)
= 2 .7 + 2 4 .7 + 2 7 .7 + 2 10 .7
= ( 2 + 2 4 + 2 7 + 2 10 ).7 chia hết cho 7
Ta lại có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 + 2 8 ) + ( 2 9 + 2 10 + 2 11 + 2 12 )
= 2 ( 1 + 2 + 2 2 + 2 3 ) + 2 5 ( 1 + 2 + 2 2 + 2 3) + 2 9 (1 + 2 + 2 2 + 2 3)
= 2 .15 + 2 5 .15 + 2 9 .15
= ( 2 + 2 5 + 2 9 ). 15 chia hết cho 5 ( vì 15 chia hết cho 5 )
a) Có chia hết cho 9.
b) Có chia hết cho 9.
c) Không chia hết cho 9.
d) Không chia hết cho 9.