K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

(P): y = ax2 + bx + c

Parabol đi qua A(0 ; –1) ⇒ –1 = a.02 + b.0 + c ⇒ c = –1.

Parabol đi qua B(1 ; –1) ⇒ –1 = a.12 + b.1 + c ⇒ a + b + c = –1.

Mà c = –1 ⇒ a + b = 0 (1)

Parabol đi qua C(–1; 1) ⇒ a.(–1)2 + b.(–1) + c = 1 ⇒ a – b + c = 1.

Mà c = –1 ⇒ a – b = 2 (2)

Từ (1) và (2) ⇒ a = 1; b = –1.

Vậy a = 1 ; b = –1 ; c = –1.

5 tháng 6 2017

a)

23 tháng 10 2020

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(2\right)^2+2b+c=-4\\\frac{-b}{2a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+-2b+c=0\left(1\right)\\4a+2b+c=-4\\2a+b=0\left(3\right)\end{matrix}\right.\Rightarrow2\left(2a+b\right)+c=-4\left(2\right)\)

Thế (3) vào (2)

\(\Rightarrow0+c=-4\Rightarrow c=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-1\\c=-4\end{matrix}\right.\)

5 tháng 6 2017

Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).

9 tháng 11 2021

bấm máy giải hệ ra 3 chứ sao lại là -3 nhỉ

12 tháng 8 2018

vì có ít time nên mk hướng dẩn thôi nha .

câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)

và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)

từ (1) (2) ta có hệ : \(\Rightarrow a;b;c\)

câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)

thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .

câu 3 : tương tự câu 2 thôi nha

từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................

12 tháng 8 2018

Ok tks fen

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


13 tháng 12 2017

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

14 tháng 12 2022

Bài 2:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\\left(-2a\right)^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+1\\a-2a+a+1=-1\end{matrix}\right.\)

=>1=-1(loại)

6 tháng 12 2017

a) ta có : \(\left(P\right)y=ax^2+bx+c\) đi qua 3 điểm \(A\left(0;-1\right);\left(1;-1\right)c\left(-1;1\right)\)

nên ta có hệ phương trình 3 ẩn sau : \(\left\{{}\begin{matrix}0a+0b+b=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\)

giải phương trình ta được : \(\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) vậy \(a=1;b=c=-1\)

b) quan sát phương trình ta thấy hệ số : \(a=-1;b=3;c=2\)

vậy \(a=-1;b=3;c=2\)