Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình ( α ) có dạng: (x – 2) + (y) + (z – 1) = 0 hay x + y + z – 3 = 0
a) \(\left(x-5\right)^2+\left(y+3\right)^2+\left(z-7\right)^2=4\)
b) \(\left(x-4\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=36\)
c) \(\left(x-3\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=18\)
Hai vecto có giá song song với mặt phẳng ( α ) là: u → = (0; 1; 1) và v → = (−1; 0; 2).
Suy ra ( α ) có vecto pháp tuyến là n → = u → ∧ v → = (2; −1; 1)
Mặt phẳng ( α ) đi qua điểm A(1; 0; 0) và nhận n → = (2; −1; 1) là vecto pháp tuyến. Vậy phương trình của (α) là: 2(x – 1) – y + z = 0 hay 2x – y + z – 2 = 0
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)
Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)
Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.
Do mặt phẳng (R) cần tìm có phương trình vuông góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương.
Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :
\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)
\(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)
Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)
Suy ra (R) có phương trình :
\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)
hay \(\left(R\right):4x-5y+3z-1=0\)
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Hai vecto có giá song song hoặc nằm trên ( α ) là: MN → = (3; 2; 1) và MP → = (4; 1; 0).
Suy ra ( α ) có vecto pháp tuyến là n → = MN → ∧ MP → = (−1; 4; −5)
Vậy phương trình của ( α ) là: -1(x – 1) + 4(y – 1) – 5(z – 1) = 0 hay x – 4y + 5z – 2 = 0