Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(d_1:3x+2y+6=0\)
b) Giao của d và \(\Delta\) là \(A\left(2;0\right)\). Lấy \(B\left(0;-3\right)\) thuộc d. Ảnh của B qua phép đối xứng qua đường thẳng \(\Delta\) là \(B'\left(5;2\right)\). Khi đó d' chính là đường thẳng AB':\(2x-3y-4=0\)
Dễ thấy d chứa điểm \(H\left(1;1\right)\) và \(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)
Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)
Lấy A(2;0), B(0;2) thuộc d, Ta có ảnh của A và B qua phép quay tâm O góc \(90^o\) lần lượt là B=(0;2) và A' = (-2;0). Do đó ảnh của d qua phép quay tâm O góc \(90^o\) là đường thẳng BA' có phương trình x - y + 2 = 0.
Lấy A(2;0), B(0;2) thuộc d, Ta có ảnh của A và B qua phép quay tâm O góc \(90^o\) lần lượt là B=(0;2) và A' = (-2;0). Do đó ảnh của d qua phép quay tâm O góc \(90^o\) là đường thẳng BA' có phương trình x - y + 2 = 0.