Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thỏa mãn 3 EA → + 2 EB → + EC → = 0 → ⇒ E 1 ; 4 ; − 3
T = 6 ME 2 + 3 EA 2 + 2 EB 2 + EC 2
T nhỏ nhất khi ME nhỏ nhất <=> M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).
Đáp án A
Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thoả 3 E A → + 2 E B → + E C → = 0 → ⇒ E ( 1 ; 4 ; − 3 ) . T = 6 M E 2 + 3 E A 2 + 2 E B 2 + E C 2
T nhỏ nhất khi ME nhỏ nhất ⇔ M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).
I E → = ( 0 ; 3 ; − 4 ) , E M → = ( a − 1 ; b − 4 ; c + 3 )
I E → , M E → cùng phương ⇔ E M → = k I E → ⇔ a − 1 = 0 b − 4 = 3 k c + 3 = − 4 k ⇔ a = 1 b = 3 k + 4 c = − 4 k − 3
M ∈ ( S ) ⇒ ( 3 k + 3 ) 2 + ( − 4 k − 4 ) 2 = 1 ⇔ k = − 4 5 k = − 6 5
k = − 4 5 ⇒ M 1 1 ; 8 5 ; 1 5 ⇒ E M 1 = 208 5
k = − 6 5 ⇒ M 2 1 ; 2 5 ; 9 5 ⇒ E M 2 = 6 > E M 1 (Loại)
Vậy M 1 ; 8 5 ; 1 5
Kiểm tra thấy A và B nằm khác phía so với mặt phẳng (P)
Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 )
Lại có M A - M B = M A - M B ' ≤ A B ' = c o n s t .
Vậy M A - M B đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).
Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .
Tọa độ điểm M ứng với tham số t là nghiệm của phương trình
1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6
Suy ra a = -2; b = -3; c = 6
Vậy a + b + c = 1
Đáp án A
Đáp án D
Phương pháp:
+ Tìm tâm và bán kính của mặt cầu
+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M
+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu
Cách giải:
Mặt cầu (S) có tâm
nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất thì M là giao điểm của đường thẳng d đi qua I , nhận n P → = 2 ; - 1 ; 2 làm VTCP với mặt cầu.
Phương trình đường thẳng
Tọa độ giao điểm của đường thẳng d và mặt cầu (S) thỏa mãn hệ phương trình
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
Đáp án D
Gọi điểm I x ; y ; z sao cho 3 I A ¯ + 2 I B ¯ + I C ¯ = 0 ¯ suy ra điểm I(1;4;-3)
Xét mặt cầu S : x - 1 2 + y - 1 2 + z - 1 2 = 1 có tâm E(1;1;1) và bán kính R = 1.
Suy ra I E ¯ = ( 0 ; - 3 ; 4 ) ⇒ I E = 5 > R = 1 . Ta có T = 3 M A ¯ 2 + 2 . M B ¯ 2 + M C ¯ 2 = 3 . M I ¯ + I A ¯ 2 + 2 . M I ¯ + I B ¯ 2 + M I ¯ + I C ¯ 2
= 6 . M I 2 + 2 . M I ¯ . 3 I A ¯ + 2 I B ¯ + I C ¯ + 3 I A 2 + 2 I B 2 + I C 2 = 6 M I 2 + 3 I A 2 + 2 I B 2 + I C 2 .
Để tổng T đạt giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất vì tổng 3 I A 2 + 2 I B 2 + I C 2 không đổi. Suy ra M, E, I thẳng hàng mà IE = 5 và EM = 1 nên ⇒ 5 . E M ¯ = E I ¯ .
Lại có E I ¯ = 0 ; 3 ; - 4 và E M ¯ = a - 1 ; b - 1 ; c - 1 suy ra a = 1 5 b - 1 = 3 5 c - 1 = - 4 ⇒ a + b + c = 15 4 .