K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

Đáp án A

Gọi M là trung điểm của AC, E là chân đường phân giác trong góc C. Ta có:

 Vì M thuộc đường trung tuyến kẻ từ B có phương trình

Kẻ AH vuông góc với CE tại H, cắt BC tại D => Tam giác ACD cân tại C vậy H là trung điểm của AD.

vectơ chỉ phương của CE là   u → 1 =(2;-1;-1)

A B → =(0;2;-2). u → =(m;n;-1) là một vectơ chỉ phương của AB

=> A B → và  u →  cùng phương.

6 tháng 1 2018

Chọn C

 

Gọi M là trung điểm của AC. Khi đó M thuộc vào đường trung tuyến kẻ từ B của tam giác ABC.

Giả sử M (3 – t ; 3 + 2t ; 2 – t) Δ suy ra C (4-2t; 3+4t; 1-2t).

Mà C thuộc và đường phân giác trong d của góc C nên ta có: 

Suy ra C (4; 3; 1).

Gọi H là hình chiếu vuông góc của A trên đường phân giác trong d.

Suy ra H (2+2t';4-t';2-t') 

Ta có  ó 2. 2t'+ (-1) (1-t')+ (-1) (-1-t')=0 ó 4t'-1+t'+1+t'=0 ó t'=0

=> H (2;4;2).

Gọi A' đối xứng với A qua đường phân giác trong d.

Suy ra A’ ∈ (BC) và A' (2;5;1). Khi đó  là vectơ chỉ phương của đường thẳng BC.

12 tháng 12 2017

Đáp án C

Phương pháp:

+) Tam giác ABC có trung tuyến BM và phân giác CD.

+) Tham số hóa tọa độ điểm M là trung điểm của AC, tìm tọa độ điểm C theo tọa độ điểm M.

+) Tìm tọa độ điểm N đối xứng với M qua CD =>N ∈ BC => Phương trình đường thẳng BC

+) Tìm tọa độ điểm B=BM ∩ BC, khi đó mọi vector cùng phương với AB đều là VTCP của AB.

Cách giải:

Tam giác ABC có trung tuyến BM và phân giác CD.

Gọi M(30t; 3+2t;2-t) ∈ BM là trung điểm của AC ta có 

Gọi H là hình chiếu của M trên CD ta có 

Gọi N là điểm đối xứng với M qua CD => H là trung điểm của MN 

Do CD là phân giác của góc C nên N ∈ BC, do đó phương trình đường thẳng CB là

Xét hệ phương trình 

=> B(2;5;1)

28 tháng 10 2019

Chọn A

Gọi M(3-t; 3+2t; 2-t) là trung điểm cạnh AC, khi đó C(4-2t; 3+4t; 1-2t)

Mặt khác C thuộc đường phân giác trong góc C là tam giác nên 

Gọi A' đối xứng với A  qua phân giác trong góc C => A' ∈ CB

Mặt phẳng  α qua A  và vuông góc với đường phân giác trong góc C:

Mặt khác : H là trung điểm AA' nên A'(2;5;1) 

Phương trình đường thẳng BC qua A', C:

6 tháng 10 2018

15 tháng 7 2017

Chọn C

Gọi M là trung điểm AC.

Trung tuyến BM có phương trình  suy ra M (3-m;3+2m;2-m) => C (4 – 2m; 3 + 4m; 1 – 2m).

Vì C nằm trên đường phân giác trong góc C nên

Gọi A' là điểm đối xứng của A qua phân giác trong góc C, khi đó A' (2+4a;5-2a;1-2a) và A’ BC.

Véc tơ chỉ phương của đường thẳng chứa phân giác trong góc C là 

19 tháng 3 2019

Chọn D

Giả sử B (5b ; 0 ; 1 + 4b) BM, C (4 + 16c ; -2-13c ; 3 + 5c) CH

là vectơ chỉ phương của đường phân giác góc A.

Vậy phương trình đường phân giác góc A là: 

28 tháng 5 2021

\(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{-2}\) có VTCP \(\overrightarrow{u}\left(1;2;-2\right)\)

Mặt phẳng \(\left(Oxz\right)\)có VTPT \(\overrightarrow{j}\left(0;1;0\right)\)

Mặt phẳng (P) chứa d và vuông góc với (Oxz) nên VTPT của (P) là:

\(\overrightarrow{n}=\left[\overrightarrow{u},\overrightarrow{j}\right]=\left(2;0;1\right)\)

Mặt phẳng (P): điểm \(M\left(0;-1;1\right)\in d\subset\left(P\right)\), VTPT \(\overrightarrow{n}\left(2;0;1\right)\)

\(\Rightarrow\left(P\right):2x+z-1=0\)

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)