Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
phân tích thành nhân tử thì dc chứ tìm nghiệm mà ko có kết quả thì chịu
a,x2 +10x + 16= x2 + 2x +8x+16=x(x+2)+8(x+2)=(x+8)(x+2)
b, x2 - 6x - 7 = x2 + x - 7x -7= x(x+1)-7(x+1)=(x-7)(x+1)
c,mình ko làm dc
a/ Ta có \(f\left(x\right)=x^2+10x+16\)
Khi f (x) = 0
=> \(x^2+10x+16=0\)
=> \(x^2+2x+8x+16=0\)
=> \(\left(x^2+2x\right)+\left(8x+16\right)=0\)
=> \(x\left(x+2\right)+8\left(x+2\right)=0\)
=> \(\left(x+2\right)\left(x+8\right)=0\)
=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = -2; x2 = -8.
b/ Ta có \(g\left(x\right)=x^2-6x-7\)
Khi g (x) = 0
=> \(x^2-6x-7=0\)
=> \(x^2+x-7x-7=0\)
=> \(\left(x^2+x\right)-\left(7x+7\right)=0\)
=> \(x\left(x+1\right)-7\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(x-7\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)
Vậy g (x) có 2 nghiệm: x1 = -1; x2 = 7.
c) Bó tay...
a) Có:(x-2)(x+2)=0
=>x-2=0 hoặc x+2=0
=>x=2 hoặc x=-2
Vậy...
b)Có:x^2-3x=0
=>x(x-3)=0
=>x=0 hoặc x-3=0
=>x=0 hoặc x=3
Vậy...
\(a)\) Ta có :
\(x^2+6x+9=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy nghiệm của đa thức \(f\left(x\right)=x^2+6x+9\) là \(x=-3\)
Chúc bạn học tốt ~
a)
\(x^2-5x+4=x^2+x-4x+4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
Để đa thức có nghiệm thì \(\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)
b)
\(x+2x^2=x\left(1+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
c)
\(x\left(x-1\right)-x\left(x+3\right)+4\)
\(=x\left(x-1-x-3\right)+4\)
\(=-4x+4\)
Đa thức có nghiệm khi:\(-4\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\)
1)A(x)=-3x+6=0
=-3x=-6
x=2
Vậy ...
2)x2-x=0
=>x2=x
=>x=0 hoặc 1
Vậy ...
3)x2+3x=0
=>x2=-3x
=>x=-3 (chia cả hai vế cho x)
4)x2 lớn hơn hoặc bằng 0
=>x2 +1 khác 0
=> đa thức D(x)=x2+1 vô nghiêm
Vây ...
Có A (x)= -3x + 6
\(\Rightarrow\)-3x + 6 = 0
-3x = - 6
x =2
Vậy x= 2 là nghiệm của đa thức A (x)
Có B (x)= \(x^2-x\)
\(\Rightarrow x^2-x=0\)
x( x - 1) = 0
\(\Rightarrow\)x = 0 hoặc x - 1 = 0
x = 1
Vậy x = 0 và x= 1 là nghiệm của đa thức B( x)
Có C (x) = \(x^2+3x\)
\(\Rightarrow\)\(x^2+3=0\)
x( x + 3 ) = 0
Và bạn làm như đa thức B(x)
Có D(x) = \(x^2+1\)
=> x2 + 1 = 0
x2 = -1
mà \(x^2\ne1\) nên đa thức D(x) không có nghiệm
\(P=x\left(5-2x\right)\)
\(x=0,,,,,,x=\frac{-5}{-2}\)
b/ \(\left(x^2-\frac{2.7x}{2}+\frac{49}{4}\right)+10-\frac{49}{4}=\left(x-\frac{7}{2}\right)^2-\frac{9}{4}=\left(x-\frac{7}{2}+\frac{3}{2}\right)\left(x-\frac{7}{2}-\frac{3}{2}\right)\)
\(x=2..........x=5\)
p/s tích phát
a,Ta ó: \(5x-2x^2=0\Leftrightarrow x\left(5-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}}\)
Vậy...
b,Ta ó: \(Q\left(x\right)=x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)
\(Q\left(x\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
Vậy...
Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x