K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Giải bài 5 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Đặt S là tổng các hệ số của đa thức khai triển.

Ta có:

Giải bài 5 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Vậy tổng các hệ số của đa thức khai triển bằng -1.

3 tháng 4 2017

Tổng các hệ số của đa thức f(x) = (3x – 4)17 bằng:

f(1) = (3 – 4)17= (– 1)17 = -1

24 tháng 8 2017

Tại sao bài khai triển đa thức nào mình cũng nhân 1 vậy?

 

11 tháng 4 2016

Theo công thức nhị thức Niu-tơn, ta có :

\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)

Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^0\left(x-1\right)^6\)  là : \(C_6^0.C_6^2\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^1\left(x-1\right)^5\)  là : \(-C_6^1.C_5^0\)

Vì vậy hệ số của  \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)

 
 
 

 

NV
20 tháng 1 2019

\(\left(-2x+1\right)^{10}\)

Số hạng tổng quát trong khai triển: \(C_{10}^k.\left(-2x\right)^k.1^{\left(10-k\right)}=C_{10}^k.\left(-2\right)^k.x^k\)

Số hạng chứa \(x^6\Rightarrow k=6\)

Hệ số: \(C_{10}^k.\left(-2\right)^6=13440\)

3 tháng 4 2017

(x+ )6 = Ck6 . x6 – k . ()k = Ck6 . 2k . x6 – 3k

Trong tổng này, số hạng Ck6 . 2k . x6 – 3k có số mũ của x bằng 3 khi và chỉ khi

⇔ k = 1.

Do đó hệ số của x3 trong khai triển của biểu thức đã cho là:

2 . C16 = 2 . 6 = 12.

NV
13 tháng 11 2021

Tổng hệ số trong khai triển \(P\left(x\right)\) luôn luôn bằng \(P\left(1\right)\)

Do đó tổng hệ số là: \(\left(3-2.1\right)^9=1\)

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

NV
27 tháng 11 2018

\(\left(x+2.x^{-1}\right)^{10}\)

Số hạng tổng quát: \(C_{10}^k.x^k.\left(2x^{-1}\right)^{10-k}=C_{10}^k.2^{10-k}.x^{2k-10}\)

Số hạng chứa \(x^2\Rightarrow2k-10=2\Rightarrow k=6\)

Hệ số: \(C_{10}^6.2^4=3360\)

19 tháng 8 2018

ta có : \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}\left(\dfrac{x}{3}\right)^{12-k}.\left(-1\right)^k\left(\dfrac{3}{x}\right)^k\)

\(=\sum\limits^{12}_{k=0}C^k_{12}\left(-1\right)^k\dfrac{\left(x\right)^{12-2k}}{3^{12-2k}}\)

\(\Rightarrow\) để có số hạng chứa \(x^4\) thì \(12-2k=4\Leftrightarrow k=4\)

\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) là : \(\dfrac{C^4_{12}\left(-1\right)^4}{3^4}=\dfrac{55}{9}\)

vậy ............................................................................................................