K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Đáp án D

Ta có  m a x [ 1 ; 2 ]   y + m i n [ 1 ; 2 ]   y = y ( 1 ) + y 2 = m + 1 2 + m + 2 3 = 16 3 ⇒ 5 m + 7 6 = 16 3

⇔ 5 m + 7 = 32 ⇒ m = 5

23 tháng 10 2015

ta có

\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)

Đặt =\(t=\log_{\frac{1}{2}}x\) ta có

\(y=\frac{1}{3}t^3+t^2-3t+1\) 

với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)

thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]

ta tính \(y'=t^2+2t-3\) 

ta tính y'=0 suy ra t=1(loại);t=-3(loại)

ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)

vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\) 

hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

30 tháng 9 2015

ta tính 

\(y'=3x^2-6x=3x\left(x-2\right)\)

giải pt y'= 0 ta có \(3x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

x y' -3 0 1 2 0 0 y + -55 -1 -3 - -

nhìn vào bảng bt ta có giái trị lớn nhất của hàm số =3 khi x=0, hàm số đạt giá trị nhỏ nhất =-55 khi x=-3

30 tháng 9 2015

hàm số đạt giái trị lớn nhất =-1 khi x=0, nhỏ nhất =-55 khi x=-3

30 tháng 9 2015

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)

giải pt y'=0

ta  có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

bảng bt

x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2

hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

16 tháng 2 2018

Đáp án D

30 tháng 9 2015

ta có \(y=2sin^4x+\left(1-2sin^2x\right)^2\)=\(2sin^4x+4sin^4x-4sinx^2+1=6sin^4x-4sin^2x+1\)

đặt \(t=sin^2x,0\le t\le1\) 

ta đc \(y=6t^2-4t+1\)

ta tính y'=12t-4

giải pt y'=0 suy ra t=1/3

ta có bảng biến thiên 

x y' y 0 1/3 1 0 - + 1 3 1/3

từ bảng bt ta suy ra hàm số đạt giá trị nhỏ nhất \(y=\frac{1}{3}\) khi \(t=\frac{1}{3}\Rightarrow sin^2x=\frac{1}{3}\)

hàm số đạt giá trị lớn nhất y=3 khi \(t=1\Rightarrow sin^2x=1\)

23 tháng 1 2016

Câu hỏi này của ( Gia linh trần - olm)

30 tháng 9 2015

ta có  \(y=cosx+2cos^2x-1\) 

đặt \(t=cosx\) , \(\left|t\right|\le1\)

ta được \(y=2t^2+t-1\)

\(y'=4t+1\) ta giải phương trình y'=0 suy ra t=-1/4

ta có bbt


x y' y -1 -1/4 1 0 - + 0 2 -9/8

 

hàm số đạt giá trị lớn nhất =2 khi t =1 hay cosx=1

hàm số đạt giá trị nhỏ nhất =-9/8 khi t=-1/4 hay cosx=-1/4

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)