K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)

giải pt y'=0

ta  có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

bảng bt

x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2

hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2

30 tháng 9 2015

ta tính 

\(y'=3x^2-6x=3x\left(x-2\right)\)

giải pt y'= 0 ta có \(3x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

x y' -3 0 1 2 0 0 y + -55 -1 -3 - -

nhìn vào bảng bt ta có giái trị lớn nhất của hàm số =3 khi x=0, hàm số đạt giá trị nhỏ nhất =-55 khi x=-3

30 tháng 9 2015

hàm số đạt giái trị lớn nhất =-1 khi x=0, nhỏ nhất =-55 khi x=-3

23 tháng 10 2015

ta có

\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)

Đặt =\(t=\log_{\frac{1}{2}}x\) ta có

\(y=\frac{1}{3}t^3+t^2-3t+1\) 

với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)

thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]

ta tính \(y'=t^2+2t-3\) 

ta tính y'=0 suy ra t=1(loại);t=-3(loại)

ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)

vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\) 

hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0

1 tháng 4 2016

Cho hàm số y=x33m2x2+m. Tìm m

để đồ thị hàm số có cực đại, cực tiểu.

  1. m0
  2. m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
  3. m<0
  4. m=0

Cho em hỏi em có được 3GP không ạ !

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)