Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=-x^2+4x+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\ge7\)
Dấu "=" xảy ra khi và chỉ khi x = 2
Vậy Max A = 7 <=> x = 2
b) \(B=-x^2+x=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max B = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
c) \(C=-2x^2+2x-5=-2\left(x^2-x\right)-5=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Vậy Max C = \(-\frac{9}{2}\Leftrightarrow x=\frac{1}{2}\)
\(a,A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\) Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)
\(b,x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy \(Max_B=\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(c,2x-2x^2+5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-\left(x-\dfrac{1}{2}\right)-\dfrac{9}{2}\le\dfrac{-9}{2}\)Vậy \(Max_C=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(a,4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)Vậy Max A= 7 khi (x-2)2=0 \(\Rightarrow x=2\)
\(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy Max B=\(\dfrac{1}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
\(N=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}\)Vậy Max N = \(\dfrac{-39}{8}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
\(M=19-6x-9x^2\)
\(-M=9x^2+6x-19\)
\(=\left(9x^2+6x+1\right)-20\)
\(=\left(3x+1\right)^2-20\)
\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)
=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)
=>\(-M\ge-20\)\(\forall x\)
=> \(M\le20\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(3x+1\right)^2=0\)
<=> \(3x+1=0\)
<=> \(3x=-1\)
<=> \(x=\frac{-1}{3}\)
Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)
\(N=1+4x-x^2\)
\(-N=x^2-4x+1\)
\(=\left(x^2-4x+4\right)-3\)
\(=\left(x-2\right)^2-3\)
\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)
=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)
=>\(-N\ge-3\)\(\forall x\)
=>\(N\le3\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)
Chúc bạn học tốt ~! :)
+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3
Vậy Mmax=20 khi x=-1/3
+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
tiếp tục giống M
Ta có : A=-x2+4x-3
=-x2+4x-4+1
=-(x2-4x+4)+1
=1-(x-2)2
Vì : (x-2)2\(\ge\)0\(\Rightarrow\)-(x-2)2\(\le\)0 , với mọi x.
Vậy giá trị lớn nhất của A bằng 1
Dấu "=" xảy ra khi (x-2)2=0\(\Rightarrow\)x-2=0\(\Rightarrow\)x=2
\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)
Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)
\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)
Nên GTLN của F là 2 đạt được khi \(x=2\)
\(A=x^2-4x+5\)
=\(\left(x^2-4x+4\right)+1\)
\(=\left(x+2\right)^2+1\)
Do \(\left(x+2\right)^2\ge0\forall x\)
=>\(\left(x+2\right)^2+1\ge1\forall x\)
=> \(A\ge1\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy Amin \(\ge\) 1 khi \(x=-2\)
\(B=2x^2+4x+5\)
\(=\left(x^2+2x+1\right)+\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\)
=>\(\left(x+1\right)^2+\left(x+1\right)^2+3\ge3\forall x\)
=> \(B\ge3\forall x\)
Dấu = xảy ra khi:
\(\left(x+1\right)^2=0\)
<=>\(x+1=0\)
<=> \(x=-1\)
Vậy \(B_{min}\) \(\ge3\)\(khi\)\(x=-1\)
Chúc bạn học tốt~!
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
Ta có: A = 4x – x 2 + 3
= 7 – x 2 + 4x – 4
= 7 – ( x 2 – 4x + 4)
= 7 – x - 2 2
Vì x - 2 2 ≥ 0 với mọi x nên A = 7 – x - 2 2 ≤ 7
Vậy giá trị của A lớn nhất là 7 khi x – 2 = 0 hay x = 2