K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Ta có: A = 4x –  x 2  + 3

              = 7 –  x 2  + 4x – 4

              = 7 – ( x 2 – 4x + 4)

      = 7 – x - 2 2

Vì  x - 2 2  ≥ 0 với mọi x nên A = 7 –  x - 2 2  ≤ 7

Vậy giá trị của A lớn nhất là 7 khi x – 2 = 0 hay x = 2

15 tháng 7 2016

a) \(A=-x^2+4x+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\ge7\)

Dấu "=" xảy ra khi và chỉ khi x = 2

Vậy Max A = 7 <=> x = 2

b) \(B=-x^2+x=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Vậy Max B = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

c) \(C=-2x^2+2x-5=-2\left(x^2-x\right)-5=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Vậy Max C = \(-\frac{9}{2}\Leftrightarrow x=\frac{1}{2}\)

24 tháng 6 2017

\(a,A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\) Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)

\(b,x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy \(Max_B=\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(c,2x-2x^2+5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-\left(x-\dfrac{1}{2}\right)-\dfrac{9}{2}\le\dfrac{-9}{2}\)Vậy \(Max_C=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

6 tháng 6 2017

\(a,4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)Vậy Max A= 7 khi (x-2)2=0 \(\Rightarrow x=2\)

\(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy Max B=\(\dfrac{1}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

\(N=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}\)Vậy Max N = \(\dfrac{-39}{8}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

2 tháng 7 2018

\(M=19-6x-9x^2\)

\(-M=9x^2+6x-19\)

\(=\left(9x^2+6x+1\right)-20\)

\(=\left(3x+1\right)^2-20\)

\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)

=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)

=>\(-M\ge-20\)\(\forall x\)

=> \(M\le20\)\(\forall x\)

Dấu = xảy ra khi:

\(\left(3x+1\right)^2=0\)

<=> \(3x+1=0\)

<=> \(3x=-1\)

<=> \(x=\frac{-1}{3}\)

Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)

\(N=1+4x-x^2\)

\(-N=x^2-4x+1\)

\(=\left(x^2-4x+4\right)-3\)

\(=\left(x-2\right)^2-3\)

\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)

=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)

=>\(-N\ge-3\)\(\forall x\)

=>\(N\le3\)\(\forall x\)

Dấu = xảy ra khi:

\(\left(x+2\right)^2=0\)

<=> \(x+2=0\)

<=>\(x=-2\)

Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)

Chúc bạn học tốt ~! :)

2 tháng 7 2018

+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)

Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)

Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3

Vậy Mmax=20 khi x=-1/3

+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)

tiếp tục giống M

11 tháng 9 2016

Ta có : A=-x2+4x-3

=-x2+4x-4+1

=-(x2-4x+4)+1

=1-(x-2)2

Vì : (x-2)2\(\ge\)0\(\Rightarrow\)-(x-2)2\(\le\)0 , với mọi x.

Vậy giá trị lớn nhất của A bằng 1

Dấu "=" xảy ra khi (x-2)2=0\(\Rightarrow\)x-2=0\(\Rightarrow\)x=2

2 tháng 7 2018

\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)

Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)

\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)

Nên GTLN của F là 2 đạt được khi \(x=2\)

7 tháng 7 2018

GTLN cua F la 2 khi 

x=2 

chuc ban hoc tot

6 tháng 7 2016

bài 2 á. Nói rõ hơn đi bạn mình chưa hiểu

2 tháng 7 2018

\(A=x^2-4x+5\)

=\(\left(x^2-4x+4\right)+1\)

\(=\left(x+2\right)^2+1\)

Do \(\left(x+2\right)^2\ge0\forall x\)

=>\(\left(x+2\right)^2+1\ge1\forall x\)

=> \(A\ge1\forall x\)

Dấu = xảy ra khi:

\(\left(x+2\right)^2=0\)

<=> \(x+2=0\)

<=>\(x=-2\)

Vậy Amin \(\ge\) 1 khi \(x=-2\)

\(B=2x^2+4x+5\)

\(=\left(x^2+2x+1\right)+\left(x^2+2x+1\right)+3\)

\(=\left(x+1\right)^2+\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\)

=>\(\left(x+1\right)^2+\left(x+1\right)^2+3\ge3\forall x\)

=> \(B\ge3\forall x\)

Dấu = xảy ra khi:

\(\left(x+1\right)^2=0\)

<=>\(x+1=0\)

<=> \(x=-1\)

Vậy  \(B_{min}\) \(\ge3\)\(khi\)\(x=-1\)

Chúc bạn học tốt~!

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)