K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = − m + 1 2  + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − m + 1 2  + 4 = 0 ⇔  m + 1 2 = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

Tập xác định :

Nếu hàm số đạt cực đại tại x = 2 thì y'(2) = 0 ⇔ m2 + 4m + 3 = 0 ⇔ m=-1 hoặc m=-3

- Với m = -1, ta có :

x=0 hoặc x=2.

Ta có bảng biến thiên :

Trường hợp này ta thấy hàm số không đạt cực đại tại x = 2.

- Với m = -3, ta có:

x=2 hoặc x=4

Ta có bản biến thiên :

Trường hợp này ta thấy hàm số đạt cực đại tại x = 2.

Vậy m = -3 là giá trị cần tìm.

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0



22 tháng 4 2016

Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)

\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)

Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :

\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)

Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)

                                                                              \(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

GV
21 tháng 4 2017

\(y'=3x^2-4x+m\)

Để hàm số đạt cực tiểu tai x = 1 thì x = 1 là nghiệm của y' và y' đổi dấu khi đi qua x = 1.

Để x = 1 là nghiệm của y' thì:

\(3.1^2-4.1+m=0\) \(\Rightarrow m=1\)

Với m = 1. khi đó: \(y'=3x^2-4x+1\) có 2 nghiệm là \(1\)\(\dfrac{1}{3}\); \(y'\) đổi dấu từ âm sang dương khi đi qua x = 1. Vậy hàm số có cực tiểu tại x = 1.

GV
21 tháng 4 2017

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)\)

Để hàm số có cực trị tại x = 1 thì x =1 phải là nghiệm của y'=0.

=> \(3.1^2-2m.1+\left(m-\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow m=\dfrac{7}{3}\)

Khi đó ta có:

\(y=x^3-\dfrac{7}{3}x^2+\dfrac{5}{3}x+5\)

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)=\dfrac{1}{3}\left(9x^2-14x+5\right)\)

\(y'\) có 2 nghiệm là \(1\)\(\dfrac{5}{9}\).

\(y'\) đổi dấu từ âm sang dương khi đi qua x = 1 nên tại x = 1 thì hàm số đạt cực tiểu.

Giá trị cực tiểu tại x = 1 là:

\(y\left(1\right)=1^3-\dfrac{7}{3}.1^2+\dfrac{5}{3}.1+5=\dfrac{16}{3}\)

23 tháng 4 2016

Ta có : \(y"=6mx+6\)

Hàm số đạt cực đại tại điểm \(x=2\Leftrightarrow\begin{cases}y'\left(2\right)=0\\y"\left(2\right)< 0\end{cases}\)

                                                    \(\Leftrightarrow\begin{cases}12m+24=0\\12m+6< 0\end{cases}\)\(\Leftrightarrow m=-2\)

23 tháng 4 2016

\(y'=3mx^2+6x+12\)

Để hàm số đạt cực đại tại điểm x = 2 thì \(y'\left(2\right)=0\Leftrightarrow m=-2\)

Với \(m=-2\) ta có \(y'=3\left(-2x^2+2x+4\right)\) 

Ta thấy hàm số đạt cực đại tại điểm \(x=2\)

24 tháng 3 2016

Ta có \(y'=3x^2-6\left(m+1\right)x+9\)

Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là  \(x_1,x_2\)

\(\Leftrightarrow\) \(x^2-2\left(m+1\right)x+3=0\) có hai nghiệm phân biêt  \(x_1,x_2\)
 
\(\Leftrightarrow\Delta'=\left(m+1\right)^2-3\Leftrightarrow\begin{cases}m>-1+\sqrt{3}\\m<-1-\sqrt{3}\end{cases}\) (1)
Theo định lí Viet ta có  \(x_1+x_2=2\left(m+1\right)\)
 \(x_1,x_2=3\)
Khi đó 
\(\left|x_1-x_2\right|\le2\)  \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le4\)
                        \(\Leftrightarrow4\left(m+1\right)^2-12\le4\)
                        \(\Leftrightarrow\left(m+1\right)^2\le4\)
                        \(\Leftrightarrow-3\le m\)\(\le1\) (2)
Từ (1) và (2) suy ra giá trị của m là \(-3\le m<-1-\sqrt{3}\) và\(-1+\sqrt{3}\)<m\(\le1\)