K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Ta có : \(12^{30}:36^{15}\) = 1073741824

Mà lại có : \(4^{15}\) = 1073741824

Suy ra thương của \(\dfrac{12^{30}}{36^{15}}\) băng \(4^{15}\)

CHÚC BẠN HOK TỐT !

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

5 tháng 12 2018

a, \(\frac{3}{5}\left(2x-\frac{1}{3}\right)+\frac{4}{15}=\frac{12}{30}\)

\(\Leftrightarrow\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)

\(\Leftrightarrow2x-\frac{1}{3}=\frac{2}{9}\)

\(\Leftrightarrow2x=\frac{5}{9}\)

\(\Leftrightarrow x=\frac{5}{18}\)

b,\(\left(-0,2\right)^x=\frac{1}{25}\)

\(\Leftrightarrow\left(\frac{-1}{5}\right)^x=\left(\frac{-1}{5}\right)^2\)

\(\Leftrightarrow x=2\)

c,\(\left|x-1\right|-\frac{3}{12}=\left(-\frac{1}{2}\right)^2\)

\(\Leftrightarrow\left|x-1\right|-\frac{3}{12}=\frac{1}{4}\)

\(\Leftrightarrow\left|x-1\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)

5 tháng 12 2018

\(a,\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{12}{30}-\frac{4}{15}\)

\(\frac{3}{5}\left(2x-\frac{1}{3}\right)=\frac{2}{15}\)

\(2x-\frac{1}{3}=\frac{2}{9}\)

\(x=\frac{5}{18}\)

\(b,\left(-0,2\right)^x=\frac{1}{25}\)

\(\left(-0,2\right)^x=\left(-\frac{1}{5}\right)^2\)

\(\left(-0,2\right)^x=\left(-0,2\right)^2\)

\(x=2\)

c,/x-1/=1/2 

Nếu 
\(x-1\ge0\)

\(x\ge1\)

suy ra x-1=1/2

         x=3/2(thỏa mãn điều kiện )

nếu \(x-1\le0\)

   \(x\le1\)

suy ra x-1=-1/2

           x=1/2 (thỏa mãn điều kiện )

Vậy ...

nha !!!

10 tháng 9 2018

a, \(\left(\dfrac{-5}{11}\right).\dfrac{7}{15}.\left(\dfrac{11}{-5}\right).\left(-30\right)=\dfrac{-5}{11}.\dfrac{7}{15}.\dfrac{-11}{5}.\dfrac{-30}{1}\)= ( - 14 )

b, \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{1.4.3}{3.3.5}=\dfrac{4}{15}\)

c, \(\dfrac{-7}{15}.\dfrac{5}{8}.\dfrac{15}{-7}.\left(-16\right)=\dfrac{-7}{15}.\dfrac{5}{8}.\dfrac{-15}{7}.\dfrac{-16}{1}\)

\(\dfrac{-1.5.-1.-2}{1.1.1.1}=\left(-10\right)\)

d,\(\left(\dfrac{-1}{2}\right).3\dfrac{1}{5}+\left(\dfrac{-1}{2}\right).-2\dfrac{1}{5}=\left(\dfrac{-1}{2}\right).\left[\dfrac{16}{5}+\left(\dfrac{-11}{5}\right)\right]\)

= \(\left(\dfrac{-1}{2}\right).1=\dfrac{-1}{2}\)

29 tháng 8 2018

a) (-5/11.11/-5).7/15

=1.7/15=7/15

b)(11/12:33/16).3/5

=(11/12.16/33).3/5

=4/9.3/5=4/15

c)(-7/15.15/-7).5/8

=1.5/8=5/8

d)(-1/2).(16/5.-11/5)

=-1/2.1=-1/2

xg r đó

9 tháng 8 2017

a) \(\dfrac{5}{6}:x=30:3\)

\(\Leftrightarrow\dfrac{5}{6}:x=10\)

\(\Leftrightarrow x=\dfrac{5}{6}:10\)

\(\Leftrightarrow x=\dfrac{1}{12}\)

Vậy .......

b) \(x:2,5=0,003:0,75\)

\(\Leftrightarrow x:2,5=0,004\)

\(\Leftrightarrow x=0,004.2,5\)

\(\Leftrightarrow x=0,01\)

Vậy .......

c) \(3,8:\left(2x\right)=\dfrac{1}{4}:2\dfrac{2}{3}\)

\(\Leftrightarrow3,8:\left(2x\right)=\dfrac{1}{4}:\dfrac{8}{3}=\dfrac{3}{32}\)

\(\Leftrightarrow2x=3,8:\dfrac{3}{32}\)

\(\Leftrightarrow2x=\dfrac{698}{25}\)

\(\Leftrightarrow x=\dfrac{304}{15}\)

Vậy ...

d) \(\dfrac{2}{3}:0,4=x:\dfrac{4}{5}\)

\(\Leftrightarrow x:\dfrac{4}{5}=\dfrac{2}{3}\)

\(\Leftrightarrow x=\dfrac{8}{15}\)

Vậy ....

e) \(3\dfrac{4}{5}:40\dfrac{8}{15}=0,25:x\)

\(\Leftrightarrow0,25:x=\dfrac{19}{5}:\dfrac{608}{15}\)

\(\Leftrightarrow0,25x=\dfrac{57}{608}\)

\(\Leftrightarrow x=\dfrac{228}{608}\)

Vậy ...

e) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)

\(\Leftrightarrow xx=\left(-60\right)\left(-15\right)\)

\(\Leftrightarrow x^2=900\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=30^2\\x^2=\left(-30\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\)

Vậy ...

a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)

\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)

\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)

b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)

\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)

c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)

\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)

e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)

21 tháng 11 2019

Bài 1:

a) Đề ko rõ, coi lại

b) \(75^{20}=45^{10}.5^{30}\)

\(\Leftrightarrow\left(75^2\right)^{10}=45^{10}.\left(5^3\right)^{10}\)

\(\Leftrightarrow5625^{10}=45^{10}.125^{10}\)

\(\Leftrightarrow5625^{10}=\left(45.125\right)^{10}\)

\(\Leftrightarrow5625^{10}=5625^{10}\)

\(\Rightarrow75^{20}=45^{10}.5^{30}\left(đpcm\right)\)

Bài 2:

a) \(\frac{x}{-4}=\frac{-3}{5}\)

\(\Rightarrow x.5=-4.\left(-3\right)\)

\(\Rightarrow x.5=12\)

\(\Rightarrow x=\frac{12}{5}=2,4\)

b) c) d) Làm tương tự câu a. Bn tự lm cho nhớ

e) \(30.5x=4.12\)

\(\Rightarrow150x=48\)

\(\Rightarrow x=\frac{48}{150}=0,32\)

f) g) Làm tương tự câu e. Bn tự lm cho nhớ