Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
\(=\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right).\frac{x-1}{x}-\frac{2}{x-1}\)
\(=\frac{2x}{\left(x-1\right)^2}.\frac{x-1}{x}-\frac{2}{x-1}\)
\(=\frac{2}{x-1}-\frac{2}{x-1}=0\)
\(\frac{4}{x-1}+\frac{2}{1-x}+\frac{x}{x-1}\)
\(=\frac{4}{x-1}-\frac{2}{x-1}+\frac{x}{x-1}\)
\(=\frac{4-2+x}{x-1}\)
\(=\frac{2+x}{x-1}\)
P/s tham khảo nha
\(1,\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)
\(x-2\sqrt{x}-3\sqrt{x}+6\)
\(x-5\sqrt{x}+6\)
\(2,\left(x+2\right)\left(x-3\right)+x\left(x+1\right)\)
\(x^2+2x-3x-6+x^2+x\)
\(2x^2-6\)
\(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x-1\right)\)
Áp dụng hằng đẳng thức thứ 3 => (A + B)(A - B) = A2 - B2
=> \(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=x^2-\left(\frac{1}{2}\right)^2=x^2-\frac{1}{4}\)
=> \(\left(x^2-\frac{1}{4}\right)\left(4x-1\right)=x^2\left(4x-1\right)-\frac{1}{4}\left(4x-1\right)\)
\(=4x^3-x^2-x+\frac{1}{4}\)
Vậy : ....
\(1.\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)+1\left(\sqrt{x}-2\right)\)
\(=x-2\sqrt{x}+\sqrt{x}-2\)
\(=x-\sqrt{x}-2\)
\(2.\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2\)
\(=x\left(x-2\right)+4\left(x-2\right)-\left(x^2-6x+9\right)\)
\(=x^2-2x+4x-8-x^2+6x-9\)
\(=8x-17\)
\(\frac{x-3}{x+1}-\frac{x+2}{x-1}-\frac{8x}{1-x^2}\)
\(=\) \(\frac{x-3}{x+1}-\frac{x+2}{x-1}+\frac{8x}{x^2-1}\)
\(=\)\(\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{\left(x-3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{x^2-x-3x+3-x^2-x-2x-2+8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{1}{x-1}\)
Bài làm:
đk: \(x\ne-3;x\ne1\)
Ta có: \(\frac{x^2+6x+9}{1-x}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{\left(x+3\right)^2}{-\left(x-1\right)}\cdot\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}\)
\(=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
\(=-\frac{x^2-2x+1}{2x+6}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne-3\\x\ne1\end{cases}}\)
\(\frac{x^2+6x+9}{1-x}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x+3\right)^2}{x-1}.\frac{\left(x-1\right)^3}{2\left(x+3\right)^3}=\frac{-\left(x-1\right)^2}{2\left(x+3\right)}\)
cái này có mẫu thức chung là 3(x-1) rồi bạn quy đồng lên là được thôi
\(\frac{4}{x-1}-\frac{2}{1-x}-\frac{x}{x-1}\)
\(=\frac{4}{x-1}+\frac{-2}{x-1}-\frac{x}{x-1}\)
\(=\frac{2-x}{x-1}\)
ĐKXĐ: \(x\ne1\)
\(\frac{4}{x-1}-\frac{2}{1-x}-\frac{x}{x-1}\)
\(=\frac{4}{x-1}+\frac{2}{x-1}-\frac{x}{x-1}\)
\(=\frac{4+2-x}{x-1}\)
\(=\frac{6-x}{x-1}\)
(x – 1)(x + 1)(x + 2)
= ( x 2 + x – x – 1)(x + 2)
= ( x 2 – 1)(x + 2)
= x 2 ( x + 2) – 1.(x +2)
= x 3 + 2 x 2 – x – 2