K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Áp dụng công thức tính số góc tạo thành nhờ n tia chung gốc thì ta có:

- n . ( n - 1 ) : 2 = số góc tạo thành

Áp dụng công thức theo hướng ngược lại, ta có:

- n . ( n - 1 ) : 2 = 21

=> n . ( n - 1 ) = 21 . 2

=> n . ( n - 1 ) = 42

Mà 6 . 7 = 42

=> n = 6

Vậy giá trị của n = 6.


 

27 tháng 6 2016

sai bét

2 tháng 8 2016

dễ mà bạn

nhân phân phối vô

 

2 tháng 8 2016

bạn giải giúp mik đc không?

14 tháng 2 2020

a)x=-9 b)x=16 c)x=-170

25 tháng 10 2016

a)n+3\(⋮\)n

n\(⋮\)n

n+3-n\(⋮\)n

3\(⋮\)n

\(\Rightarrow\)n={1,3}

b)7n+8\(⋮\)n

7n\(⋮\)n

7n+8-7n\(⋮\)n

8\(⋮\)n

\(\Rightarrow\)n={1,2,4,8}

c)35-12n\(⋮\)n

12n\(⋮\)n

35-12n-12n\(⋮\)n

35\(⋮\)n

\(\Rightarrow\)n={1,5,7,35}

d)n+8\(⋮\)n+3

n+3\(⋮\)n+3

n+8-(n+3)\(⋮\)n+3

n+8-n-3\(⋮\)n+3

5\(⋮\)n+3

\(\Rightarrow\)n+3={1,5}

\(\Rightarrow\)n={-1,2}

vi x\(\in\)N nen x =2

d)16-3n\(⋮\)n+4

3(n+4)\(⋮\)n+4

16-3n-3(n+4)\(⋮\)n+4

16-3n-3n-12\(⋮\)n+4

4\(⋮\)n+4

\(\Rightarrow\)n+4={1,4}

voi n+4=1\(\Rightarrow\)n=khong tim duoc

voi n+4=4\(\Rightarrow\)n=0

vay n=0

 

12 tháng 10 2017

a) n + 3 chia hết cho n

(n chia hết cho n + 3 ) chia hết cho n

=> 3 chia hết cho n

=> n E Ư(3)={ 1;3}

Các câu còn lại bạn tự giải nhé

1 tháng 11 2018

Bài 4:

a)Ta có: B= 23!+19!−15!

B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15

Vì 11 chia hết cho 11=>23! chia hết cho 11

19!chia hết cho 11

15! chia hết cho 11

1 tháng 11 2018

b)( sẽ dựa vào phần a luôn, dòng này bn ko phải ghi mk giải thích cho bn hiểu)

Vì 10.11=110 chia hết cho 110=>23! chia hết cho 110

19! chia hết cho 110

15! chia hết cho 110

2 tháng 8 2016

1)

\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)

\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)

Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3

=> 3.7.(n+1)n chia hết cho 6

=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6

2)

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)

Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

12n chia hết cho 6

=>\(n^3-13n\) chia hết cho 6

3)

\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)

\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3

2 tháng 8 2016

thanks bạn

15 tháng 7 2019

Bài 1.

\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{3}{32}\)

\(=\left(\frac{75}{100}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{3}{32}\right)\)

\(=1+1+\frac{11}{16}\)

\(=2+\frac{11}{16}\) \(=\frac{43}{16}\)

27 tháng 6 2017

bài 1) a) \(1+2+3+4+........+2005+2006\)

\(\Leftrightarrow\) \(\left(1+2006\right)+\left(2+2005\right)+........+\left(1003+1004\right)\)

\(\Leftrightarrow\) \(2007.\dfrac{2006}{2}=2007.1003=2013021\)

b) \(5+10+15+.......+2000+2005\)

\(\Leftrightarrow\) \(\left(2005+5\right)\left(2000+10\right)+.......+\left(1000+1010\right)\)

\(\Leftrightarrow\) \(2010.\dfrac{2005}{5}=2010.401=405010\)

c) \(140+136+132+.......+64+60\)

\(\Leftrightarrow\) \(\left(140+60\right)+\left(136+64\right)+.......+\left(100+100\right)\)

\(\Leftrightarrow\) \(200.10\) = \(2000\)

27 tháng 6 2017

1)

a) \(1+2+3+4+.....+2005+2006\)

Số các số hạng của dãy trên là:

\((2006-1):1+1=2006\)

Tổng dãy là:

\(\dfrac{2006\left(2006+1\right)}{2}=2013021\)

b) \(5+10+15+.....+2000+2005\)

Số các số hạng của dãy là:

\((2005-5):5+1=401\)

Tổng dãy là:

\(\dfrac{401\left(2005+5\right)}{2}=403005\)

c)\(140+136+132+.....+64+60\)

\(=60+64+.....+132+136+140\)

Số số hạng của dãy là:

\((140-60):4+1=11\)

Tổng dãy là:

\(\dfrac{11\left(60+140\right)}{2}=1100\)

5 tháng 4 2017

a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)

Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)

b,

\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)

\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)

\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)

\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)