Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)
\(\Rightarrow A=1+2+2^2+...+2^{40}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{41}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{41}\right)-\left(1+2+2^2+...+2^{40}\right)\)
\(\Rightarrow A=2^{41}-1\)
Vì \(2^{41}-1< 2^{41}\) nên A < B
Vậy A < B
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
Dãy số trên có số số hạng là: \(\frac{2017-1}{2}+1=1009\left(số\right)\)
=> Nếu ta chia theo từng cặp thì sẽ thừa ra số: \(7^{2017}\)
Ta có:
\(A=7+7^3+7^5+.....+7^{2017}=\left(7+7^3\right)+\left(7^5+7^7\right)+......+\left(7^{2013}+7^{2015}\right)+7^{2017}\)
\(=\left(7+7^3\right)+7^4\left(7+7^3\right)+...+7^{2012}\left(7+7^3\right)+7^{2017}=350+7^4.350+...+7^{2012}.350+7^{2017}\)
\(=350\left(1+7^4+....+7^{2012}\right)+7^{2017}\)
Mà ta lại có:
\(7^{2017}=\left(7^4\right)^{504}.7=\overline{\left(....1\right)}.7=\overline{...7}⋮̸5\Rightarrow7^{2017}⋮̸35\)
=>\(A⋮̸35\)
=> Đề sai.
Bài 1 :
a) \(-3+\left(-4\right)-\left(-3\right)+\left(2+7-10\right)=-3-4+3+2+7-10=-5\)
b) \(3-\left(-3+2-7\right)+\left(-4\right)=3+3-2+7-4=7\)
c) \(7+\left(-2-3+7\right)-\left(-2\right)=7-2-3+7+2=17\)
d) \(-\left(-3\right)-\left(-2+3-8\right)+\left(-6\right)=3+2-3+8-6=4\)
Bài 2 :
a) \(x^2-2x-\left(3x-2x\right)=x^2-2x-3x+2x=x^2-3x\)
b) \(-\left(x^2+3x^2\right)-\left(-5x^2+3x\right)=-x^2-3x^2+5x^2-3x=x^2-3x\)
c) \(\left(x-y\right)-\left(x+3y+1\right)=x-y-x-3y-1=-4y-1\)
Bài 1:
a, -3+ (-4) - (-3) + (2 + 7 - 10)
= -3 - 4 + 3 + 2 + 7 - 10
= 5 - 10
= -5.
b, 3 - (-3 + 2 - 7) + (-4)
= 3 + 3 - 2 + 7 - 4
= 11 - 4
= 7
c, 7 + (-2 - 3 + 7) - (-2)
= 7 - 2 - 3 + 7 + 2
= 9 + 2
= 11.
d, - (-3) - (-2 + 3 - 8) + (-6)
= 3 + 2 - 3 + 8 - 6
= 10 - 6
= 4.
Mình chỉ làm bài 1 thôi nhé.
Chúc bạn học tốt!
đây là câu tl của tớ:
\(2^x=4^{y-1}<=>2^x=\left(2^2\right)^{y-1}=2^{2y-2}=>x=2y-2=>2y=x+2\)
\(27^y=3^{x+8}<=>\left(3^3\right)^y=3^{x+8}<=>3^{3y}=3^{x+8}<=>3y=x+8=>3y=x+2+6\)
từ 2y=x+2
3y=x+2+6
=>3y=2y+6
=>3y-2y=6
=>y(3-2)=6
=>y=6
còn lại tớ lm giống với Tú Linh!
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
ta có :
\(x^2+\left(y-1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Thay vào C ta có :
\(C=8-6\left|0-7\right|-\left(1^2-16\right)^2=-259\)
Vậy GTLN của C = - 259