K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12 \(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\) \(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6 \(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6 \(\Leftrightarrow\) 11x = 9 \(\Leftrightarrow\) x = 0,8 Vậy S = {0,8} 2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12 \(\Leftrightarrow\)...
Đọc tiếp

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)

\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6

\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6

\(\Leftrightarrow\) 11x = 9

\(\Leftrightarrow\) x = 0,8

Vậy S = {0,8}

2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12

\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)

\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x

\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20

\(\Leftrightarrow\) 17x = 7

\(\Leftrightarrow\) x = \(\frac{7}{17}\)

Vậy S = {\(\frac{7}{17}\)}

3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15

\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)

\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3

\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)

Vậy S = {\(\frac{1}{2}\)}

4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12

\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)

\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24

\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24

\(\Leftrightarrow\) 5x = -58

\(\Leftrightarrow\) x = -11,6

Vậy S = {-11,6}

5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)

\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x

\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10

\(\Leftrightarrow\) -8x = -1

\(\Leftrightarrow\) x = \(\frac{1}{8}\)

Vậy S = {\(\frac{1}{8}\)}

6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12

\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)

\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x

\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3

\(\Leftrightarrow\) -5x = -2

\(\Leftrightarrow x=\frac{2}{5}\)

7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)

\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0

\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4

\(\Leftrightarrow\) -3x = -18

\(\Leftrightarrow\) x = 6

Vậy S = {6}

8) x\(^2\) - x - 6 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0

\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0

\(\Leftrightarrow\) (x - 3).(x + 2) = 0

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -2

Vậy S = {3; -2}

0
15 tháng 10 2020

1.

a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)\)

\(=9\left(x-3\right)=9x-27\)

b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(2x+1+x-1\right)^2=9x^2\)

c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-9\right)-\left(x^4-1\right)\)

\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

28 tháng 8 2018

Gợi ý:

a) Đặt  \(x^2+3x+1=a\)

b)  \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt     \(x^2+8x+11=a\)

c)  \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(x^2+7x+11=a\)

d) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt   \(12x^2+11x-1=a\)

24 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu e nhé!

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

a.

$4(x+5)(x+6)(x+10)(x+12)=3x^2$

$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$

$4(x^2+17x+60)(x^2+16x+60)=3x^2$

Đặt $x^2+16x+60=a$ thì pt trở thành:

$4(a+x)a=3x^2$

$4a^2+4ax-3x^2=0$

$4a^2-2ax+6ax-3x^2=0$

$2a(2a-x)+3x(2a-x)=0$

$(2a-x)(2a+3x)=0$

Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$

$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$

Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$

$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

b.

$(x+1)(x+2)(x+3)(x+6)=120x^2$

$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$

$(x^2+7x+6)(x^2+5x+6)=120x^2$

Đặt $x^2+6=a$ thì pt trở thành:

$(a+7x)(a+5x)=120x^2$

$\Leftrightarrow a^2+12ax-85x^2=0$

$\Leftrightarrow a^2-5ax+17ax-85x^2=0$

$\Leftrightarrow a(a-5x)+17x(a-5x)=0$

$\Leftrightarrow (a-5x)(a+17x)=0$

Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$

$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$

Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$

$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$

Vậy.........

6 tháng 6 2019

a,\(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)

=> \(\frac{12x}{12}-\frac{\left(5x+2\right)2}{12}=\frac{\left(7-3x\right)3}{12}\)

=>\(\frac{12x-10x-4}{12}=\frac{21-9x}{12}\)

=>(khử mẫu)

=>\(12x-10x-4=21-9x\)

=>11x=25

=>x=25/11

b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)

=>30x+9=36+32x+24

=>32x+60=30x+9

=>2x=-51

=>x=-51/2

c: \(\Leftrightarrow2x-3\left(2x+1\right)=x+6x\)

=>7x=2x-6x-3

=>7x=-4x-3

=>11x=-3

=>x=-3/11

d: \(\Leftrightarrow4\left(x+2\right)-6x=3\left(1-2x+1\right)\)

=>4x+8-6x=3(-2x+2)

=>-2x+8+6x-6=0

=>4x+2=0

=>x=-1/2

16 tháng 1 2019

a)\(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-10x-4}{12}=\dfrac{21-9x}{12}\)

\(\Leftrightarrow2x-4=21-9x\)

\(\Leftrightarrow2x-4-21+9x=0\)

\(\Leftrightarrow11x-25=0\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b)\(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)

\(\Leftrightarrow\dfrac{30x+9}{36}=\dfrac{36+24+32x}{36}\)

\(\Leftrightarrow30x+9=60+32x\)

\(\Leftrightarrow30x+9-60-32x=0\)

\(\Leftrightarrow-2x-51=0\)

\(\Leftrightarrow x=-\dfrac{51}{2}\)

c)\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-6\)

\(\Leftrightarrow\dfrac{2x-6x-3}{6}=\dfrac{x-36}{6}\)

\(\Leftrightarrow-4x-3=x-36\)

\(\Leftrightarrow-4x-3-x+36=0\)

\(\Leftrightarrow-5x+33=0\)

\(\Leftrightarrow x=\dfrac{33}{5}\)

d)\(\dfrac{2+x}{3}-\dfrac{1}{2}x=\dfrac{1-2x}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{8+4x-6x}{12}=\dfrac{3-6x+3}{12}\)

\(\Leftrightarrow8-2x=6-6x\)

\(\Leftrightarrow8-2x-6+6x=0\)

\(\Leftrightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Tính lại xem đúng không nha haha

16 tháng 1 2019

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)

\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)

\(\Leftrightarrow24x-20x-8=42-18x\)

\(\Leftrightarrow4x-8=42-18x\)

\(\Leftrightarrow4x+18x=42+8\)

\(\Leftrightarrow22x=50\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

Vậy S\(=\left\{\dfrac{25}{11}\right\}\)