Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+y^2-z^2\)
Áp dụng hằng đẳng thức:\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(x-y\right)^2-z^2\)
Áp dụng hằng đẳng thức:\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
a, Ta có x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ).( x + y ) - ( x + y )
= ( x+ y ).( x - y -1 )
b, Ta có x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z ).( x - y + z )
a) x2 - x - y2 - y = x2 - y2 - x - y
=(x - y) (x + y) - (x + y)
=(x + y) (x - y - 1)
b) x2 - 2xy + y2 - z2 = (x - y)2 - z2
=(x - y- z) (x - y + z)
a) x\(^2\)-x-y\(^2\)-y
=(x\(^2\)-y\(^2\)) - (x-y)
=xy(x-y) - (x-y)
=xy(x-y)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
Ta có:
\(x^2+2xy+y^2-x-y-12=(x^2+2xy+y^2)-(x+y)-12\)
\(=(x+y)^2-(x+y)-12 \) \((*)\)
Đặt \(x+y=a\)
từ \((*)\Rightarrow a^2-a-12=(a^2+3a)-(4a+12)\)
\(=(a+3)(a-4)\)
Thay \(a=x+y\)
\(\Rightarrow (x+y+3)(x+y-4)\)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
16-2xy-x2-y2
= - (x2+2xy+y2-16)
=- ( ( x+y)2- 42 )
làm tiếp nha bạn !
x 2 – 2xy + y 2 - z 2
= ( x 2 – 2xy + y 2 ) – z 2
= x - y 2 – z 2
= (x – y + z)(x – y – z)