K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

+ Parabol (P) đi qua A, B có hoành độ

  

là hai điểm đối xứng nhau qua Oy.

Vậy tam giác AOB cân tại O.

+ Gọi I là giao điểm của AB Oy suy ra ∆ IOA vuông tại nên:

Vậy ∆AOB là tam giác đều.

Chọn B.

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0
1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

11 tháng 8 2016

bạn có viết sai pt nào k vậy?

11 tháng 8 2016

bài toán này nghĩ mãi không ra, mình làm theo cách dời hình của lớp 11 nên không thấy hợp lý lắm.
bản thân \(x_B,x_A\)khá lẻ. Để tí nữa mình sửa lại cho chẵn để dẽ tính hơn.

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

25 tháng 12 2015

Tam giác ABC vuông tại A do BC^2 = AB^2 + AC^2 

=> Tâm O là trung điểm BC 
=> Khoảng cách từ O đến dây AB là đường trung bình = AC/2 = 6 

2>> 

r(a+b+c) =2S = AB*AC = 12 
a^2= b^2 + c^2 = 25 => a =5 

=> r = 12/(3+4+5) =1 

3>> 

Như câu 1>> 
OI = AB/2 = 3 
OM = R =BC/2 = 5 (tam giác vuông tại A nhận BC làm đk) 

=> IM = OM-OI =2

Tích mình đúng nha haha

24 tháng 12 2015

tick mik nha hihi

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

Ta có = 2α => Trong tam giác OKA có:

AK = OA.sin. => AK = a.sin2α

OK =OA.cos. => OK = a.cos2α

     O A B H K