K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

0 đáp án

1 tháng 5 2016

a)Xét tam giác ABM và tam giác ECMbanh

     MA=ME(gt)

      góc AMB=góc EMC(đđ)

      MB=MC(do AM là đường trung tuyến)

\(\Rightarrow\)tam giác ABM= tam giác ECM(c.g.c)

b)Vì tam giác ABM= tam giác ECM(c.g.c)

\(\Rightarrow\)CE=AB(cặp cạnh tương ứng)

Vì AB<AC(cạnh góc vuông nhỏ hơn cạnh huyền)

Mà AB=CE

\(\Rightarrow\)CE<AC

c)Vì tam giác ABM= tam giác ECM(c.g.c)

\(\Rightarrow\)BAM=MEC(cặp góc tương ứng)

Vì CE<AC\(\Rightarrow\)MEC<MAC

Mà MEC=BAM

\(\Rightarrow\)BAM<MAC(vô lí)

d)Xét tam giác AMC và tam giác EMB

     MA=ME(gt)

      góc AMB=góc EMC(đđ)

      MB=MC(do AM là đường trung tuyến)

\(\Rightarrow\)tam giác AMC= tam giác EMB(c.g.c)

\(\Rightarrow\)ACB=EBM(cặp góc tương ứng)

\(\Rightarrow\)BE//AC vì ACB=EBM(so le trong)

e)Minh ko hiểu bạn ghi gì cả

Bạn xem lại câu c nha

Làm mất nhiều thời gian quá!

6 tháng 12 2016

toán mấy ạ

 

15 tháng 1 2017

x:y:z=2:3:(-4)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

Theo tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+\left(-4\right)}=\frac{-125}{-5}=25\)

=>x=2.25=50, y=3.25=75, z=-4.25=-100

Kết luận.

15 tháng 1 2017

x-12=y-34=z-56

=>x=z-44, y=z-22, thay vào 3x-2y+z=4 ta có:

3(z-44)-2(z-22)+z=4

<=>3z-132-2z+44+z=4

<=>2z=92

<=>z=46

=>x=46-44=2, y=46-22=24

15 tháng 5 2016

A B C K H I

a)Vì tam giác ABC vuông tại A nên AB vuông góc với AC mà HK vuông góc với AC nên AB//HK

b)Ta có: ^AHK=^AHI=900 mà HI=HK nên AH là đường trung trực của KI

=>AK=AI(tính chất đường trung trực của đoạn thẳng)

nên tam giác AKI cân tại A

c)Vì tam giác AKI cân tại A nên ^AKI=^AIK(1)

Vì AB//HK nên ^BAK=^AKI( 2 góc sole trong)(2)

Từ (1);(2) => ^BAK=^AIK

d)Vì tam giác AIK có ^AHK=^AHI=900 nên AH là đường cao của tam giác AKI mà tam giác AKI cân tại A nên AH cũng là đường phân giác của tam giác AKI(tính chất đường cao, tia phân giác, đường trung trực, đường trung tuyến của một tam giác cân từ đỉnh đến cạnh đáy đối diện) hay ^KAH=^IAH

Xét tam giác AKC và tam giác AIC có:

AC là cạnh chung

^KAH=^IAH(CMT)

 AK=AI(CMT)

Do đó, tam giác AKC=tam giác AIC(c.g.c)

=>^AKC=^AIC(2 góc tương ứng)

31 tháng 5 2020

.

19 tháng 12 2016

xét tam giác AHB VÀ tam giác AHC có

AB = AC

BH=HC

AH: cạnh chung

do đó : tam giác AHB = TAM GIÁC AHC

 

16 tháng 10 2020

Đề bài là gì vậy ạ?

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có 

DB=EC

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDBH=ΔECK

Suy ra: HB=CK

b: Xét ΔAHB và ΔAKC có

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

c: Xét tứ giác HKED có

HD//KE

HD=KE

Do đó: HKED là hình bình hành

Suy ra: HK//DE

d: Xét hình bình hành HKED có \(\widehat{KHD}=90^0\)

nên HKED là hình chữ nhật

Suy ra: HE=KD

Xét ΔAHE và ΔAKD có 

AH=AK

HE=KD

AE=AD

Do đó: ΔAHE=ΔAKD

b: \(=b\left(10-4+3\right)=9b⋮9\)

a: \(=5^m\cdot5-5-4m=5\cdot\left(5^m-1\right)-4m⋮4\)

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng? A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0 B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0 C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0 D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0 Câu 2 : Cho...
Đọc tiếp

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0

B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0

C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0

D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0

Câu 2 : Cho vec-tơ \(\overrightarrow{b}\) \(\ne\) \(\overrightarrow{0}\) , \(\overrightarrow{a}\) = -2 . \(\overrightarrow{b}\) , \(\overrightarrow{c}\) = \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Khẳng định nào sau đây sai ?

A. \(\overrightarrow{b}\) = \(\overrightarrow{c}\)

B. \(\overrightarrow{b}\)\(\overrightarrow{c}\) ngược hướng

C. \(\overrightarrow{b}\)\(\overrightarrow{c}\) cùng phương

D. \(\overrightarrow{b}\)\(\overrightarrow{c}\) đối nhau

Câu 3 : Cho hình vuông ABCD cạnh a\(\sqrt{2}\) . Tính S= \(\left|2\overrightarrow{AD}+\overrightarrow{DB}\right|\) ?

A. 2a

B. a

C. a\(\sqrt{3}\)

D. a\(\sqrt{2}\)

1

Câu 1: B
Câu 2: A

Câu 3: C