K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

Đáp án D

5 tháng 4 2022

đáp án D nha bạn
#hoctot
 

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

8 tháng 1 2022

cho năm năm

8 tháng 1 2022

Gọi H chân đường kẻ từ A của lăng trụ

Khi đó A'H là là hình chiếu của AA' trên mp

Xét tam giác AA'H vuông tại H có : \(SinA'=\frac{AH}{AA'}\)

\(AH=AA'.SinA'=AA'.Sin60^o=\frac{b\sqrt{3}}{2}\)

Do tam giác A'B'C' là tam giác đều nên chiều cao của tam giác : \(\frac{a\sqrt{3}}{2}\)

Thể tích ABC.A'B'C' : V = \(\frac{1}{3}\). AH . \(S_{A'B'C'}=\frac{3}{8}\)\(a^2b\)

Đáp án đó

1 tháng 4 2017

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2

Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có là trung điểm của , = IJ.

Theo giả thiết = 300.

do vậy: AB1 = BB1.tan 300 = = r.

Xét tam giác vuông

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .

Vậy khoảng cách giữa AB và O1O2 :


12 tháng 9 2016

Gọi E là trung điểm BC → AE vuông góc (vg) với BC

mà (ABC) vg (BB'C'C) 

→ AE vg (BB'C'C)

\(V_{A.BB'C'C}=\frac{1}{3}\cdot AE\cdot S_{BB'C'C}=\frac{1}{3}\cdot\frac{a\sqrt{3}}{2}\cdot BB'\cdot BC=\frac{a^3\sqrt{3}}{3}\)

Vì SBB'C = 1/2 * SBB'C'C 

nên VABB'C' = 1/2 * VA.BB'C'C = (a3căn3)/6

 

14 tháng 12 2016

mình không hiểu rằng bạn muốn tìm thể tích hình lăng trụ nào?có phải là thể tích hình hộp ko?

15 tháng 12 2016

đầu bài nó chỉ cho như thế thôi, bạn thử tính xem là đáp án nào

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Do đó bán kính đường tròn \(\left(S\right)\cap\left(S'\right)\) bằng \(\dfrac{10\sqrt{41}}{41}a\)

26 tháng 4 2017

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 40 sgk Hình học 12 | Để học tốt Toán 12

27 tháng 4 2017

Hỏi đáp Toán

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0