K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

17 tháng 8 2016

Sử sụng hệ thức: \left ( \frac{i}{I_{0}} \right )^{2}+\left ( \frac{q}{q_{0}} \right )^{2}= 1

Thay số và giải hệ phương trình trìm I0 và q0

Tần số góc: ω  = \frac{I_{0}}{q_{0}} = 50 (rad/s)

29 tháng 1 2015

Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)

\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)

\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)

Thay vào (1) \(x_T=5i_1=4i_2\)

Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)

Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ­2.     

Đáp án A.

29 tháng 1 2015

\(i_1 = \frac{\lambda_1D_1}{a}\)

\(i_2 = \frac{\lambda_2D_2}{a}\)

=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)

=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))

=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)

Chọn đáp án.A

29 tháng 5 2016

Hướng dẫn:

\(U_{AB}=U_C=2\) (1)

\(U_{BC}^2=U_r^2+U_L^2=3\) (2)

\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)

Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)

Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)

 

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

3 tháng 6 2016

Khi tăng điện dung nên 2.5 lần thì dung kháng giảm 2.5 lần. Cường độ dòng trễ pha hơn hiệu điện thế $\pi/4$ nên

$Z_L-\frac{Z_C}{2.5}=R$

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì $Z_LZ_C=R^2+Z_L^2$

$Z_LZ_C=(Z_L-\frac{Z_C}{2.5})^2+Z_L^2$

Giải phương trình bậc 2 ta được: $Z_C=\frac{5}{4}Z_L$ hoặc $Z_C=10Z_L$(loại vì Zl-Zc/2.5=R<0)

$R=\frac{Z_L}{2}$

Vẽ giản đồ vecto ta được $U$ vuông góc với $U_{RL}$ còn $U_C$ ứng với cạch huyền

Góc hợp bởi U và I bằng với góc hợp bởi $U_L$ và $U_{LR}$

$\tan\alpha=\frac{R}{Z_L}=0.5$

$\sin\alpha=1/\sqrt5$

$U=U_C\sin\alpha=100V$

3 tháng 6 2016

\(U_{C}{max}=\frac{U\sqrt{R^{2}+Z_L^{2}}}{R}\); \(Zc=\frac{R^{2}+Z_L^{2}}{Z_L}\)
khi C2=2,5C1---->Zc2=Zc1/2,5=ZC/2,5
do i trể pha hơn U nên Zl>Zc/2,5
\(\tan\frac{\pi }{4}=\frac{Z_L-0,4Zc}{R}=1\Rightarrow R=Z_L-0,4Z_C\)
\(\Rightarrow Z_C.Z_L=Z_L^{2}+(Z_L-0,4Z_C)^{2}\Rightarrow 2Z_L^{2}-1,8Z_CZ_L+0,16Z_C^{2}=0\Rightarrow Z_L=0,8Z_C;Z_L=0,1Z_C\)(loai)
\(\Rightarrow R=Z_L-1,25.0,4Z_L=0,5Z_L\)
\(\Rightarrow U_{C}{max}=\frac{U\sqrt{Z_L^{2}+0,25Z_L^{2}}}{0,5Z_L}=100\sqrt{5}\Rightarrow U=100V\)

 

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)
 
 

 

30 tháng 4 2017

Ta có công thức:
\(n=a+\dfrac{b}{\lambda^2}\), trong đó a,b là các hằng số phụ thuộc môi trường.
Lập hệ pt \(\Rightarrow\left\{{}\begin{matrix}a=1,484\\b=8,944.10^{-15}\end{matrix}\right.\)
thay số \(\Rightarrow n_{vàng}=a+\dfrac{b}{\left(\lambda_{vàng}\right)^2}=1,484+\dfrac{8,944.10^{-15}}{\left(0,58.10^{-6}\right)^2}=1,51\)