K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

x - y + z 4 : x - y + z 3 = ( x - y + z )

5 tháng 10 2017

a)\(\left(x+y\right)^2:\left(x+y\right)=\left(x+y\right)^{2-1}=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(-\left(x-y\right)^4\right)=-\left(x-y\right)^{5-4}=-\left(x-y\right)\)

c)\(\left(x-y+z\right)^4:\left(x-y+z\right)^3=\left(x-y+z\right)^{4-3}=x-y+z\)

8 tháng 10 2017

a) (x+y)^2:(x+y)=x+y

b) (x−y)^5:(y−x)^4=(x-y)^5:[-(x-y)]^4=x-y

c) (x−y+z)^4:(x−y+z)^3=x-y+z

11 tháng 4 2017

dat a=x-y

b=y-z 

c=z-x

a+b+c=0=x+y+z

\(\left(\frac{a}{z}+\frac{b}{x}+\frac{c}{y}\right)\left(\frac{z}{a}+\frac{x}{b}+\frac{y}{c}\right)\)

dung bumiakopsky de giai

...........................................

20 tháng 4 2017

Bài giải:

[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2

= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2

= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]

= 3(x – y)2 + 2(x – y) – 5

17 tháng 10 2017

Bài 65: (SGK/29):

Cách 1:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2

= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2

= 3.(x-y)2 + 2.(x-y) - 5

Cách theo SGK:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

Đặt (x-y) = z => (y-x) = z

=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2

Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2

= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)

= 3z2 + 2z - 5

Cách 2:

[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2

= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2

= 3(x-y)2 + 2(x-y) - 5

3 tháng 11 2018

\(x^2+y^2+z^2=xy+yz+zx\)

\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Có \(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Rightarrow3.x^{2014}=3\)

\(\Rightarrow x^{2014}=1\)

\(\Rightarrow x=1\)

\(\Rightarrow x=y=z=1\)

Có: \(P=x^{25}+y^4+z^{2015}\)

\(\Rightarrow P=1^{25}+1^4+1^{2015}\)

\(P=1+1+1\)

\(P=3\)

Vậy \(P=3\)

Tham khảo nhé~

3 tháng 11 2018

Ta có: x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

=>x2014=y2014=z2014

Lại có: x2014+y2014+z2014 = 3

=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)

=>\(x=y=z=\pm1\)

Thay x,y,z vào P rồi tính

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

6 tháng 1 2017

Áp đụng bất đẳng thức vào

\(\left(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\right)\ge\frac{\left(x+y+z\right)^2}{2+3+4}=\frac{x^2+y^2+z^2}{2+3+4}+\frac{2\left(xz+yz+xy\right)}{2+3+4}\)

\(\Rightarrow\hept{\begin{cases}2\left(xz+yz+xy\right)=0\\\frac{x^2}{2}=\frac{y^2}{3}=\frac{z^2}{4}\end{cases}\Rightarrow x=y=z=0}\)\(\Rightarrow D=0\)

6 tháng 1 2017

Ta có

\(\frac{x^2+y^2+z^2}{2+3+4}=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{9}\right)+\left(\frac{y^2}{3}-\frac{y^2}{9}\right)+\left(\frac{z^2}{4}-\frac{z^2}{9}\right)=0\)

\(\Leftrightarrow\frac{7x^2}{18}+\frac{2y^2}{9}+\frac{5z^2}{36}=0\)

\(\Leftrightarrow x=y=z=0\)

\(\Rightarrow D=0\)

31 tháng 10 2016

Làm như vầy là sai hướng rồi.

Tham khảo :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)

\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)

\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)