Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tg28∘=sin28∘cos28∘=sin28∘.1cos28∘tg28∘=sin28∘cos28∘=sin28∘.1cos28∘ (1)
Vì 0 < cos28° < 1 nên 1cos28∘>1⇒sin28∘.1cos28∘>sin28∘1cos28∘>1⇒sin28∘.1cos28∘>sin28∘ (2)
Từ (1) và (2) suy ra: tg28° > sin28°
b) Ta có: cotg42∘=cos42∘sin42∘=cos42∘.1sin42∘cotg42∘=cos42∘sin42∘=cos42∘.1sin42∘ (1)
Vì 0 < sin42° < 1 nên 1sin42∘>1⇒cos42∘.1sin42∘>cos42∘1sin42∘>1⇒cos42∘.1sin42∘>cos42∘ (2)
Từ (1) và (2) suy ra: cotg42° > cos42°
c) Ta có: 17° +73° =90° (1)
cotg73∘=cos73∘sin73∘=cos73∘.1sin73∘cotg73∘=cos73∘sin73∘=cos73∘.1sin73∘ (2)
Vì 0 <sin73° <1 nên 1sin73∘>1⇒cos73∘.1sin73∘>cos73∘1sin73∘>1⇒cos73∘.1sin73∘>cos73∘ (3)
Từ (1), (2) và (3) suy ra: cotg73° > sin17°
d) Ta có: 32° +58° = 90° (1)
tg32∘=sin32∘cos32∘=sin32∘.1cos32∘tg32∘=sin32∘cos32∘=sin32∘.1cos32∘ (2)
Vì 0 < cos32° < 1 nên 1cos32∘>1⇒sin32∘.1cos32∘>sin32∘1cos32∘>1⇒sin32∘.1cos32∘>sin32∘ (3)
Từ (1), (2) và (3) suy ra: tg32° > cos58°
a: \(\tan50^028'< \tan63^0\)
b: \(\cot14^0>\cot35^012'\)
c: \(\tan27^0=\cot63^0< \cot27^0\)
d: \(\tan65^0=\cot25^0>\cot65^0\)
a: \(\sin25^0< \sin70^0\)
b: \(\cos40^0>\cos75^0\)
c: \(\sin38^0=\cos52^0< \cos27^0\)
d: \(\sin50^0=\cos40^0>\cos50^0\)
ĐS: a) x≈20∘x≈20∘;
b) x≈57∘x≈57∘;
c) x≈57∘x≈57∘;
d) x≈18∘x≈18∘.
a) x≈20∘x≈20∘;
b) x≈57∘x≈57∘;
c) x≈57∘x≈57∘;
d) x≈18∘x≈18∘.
Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
Với 0 ° < α < 90 ° ta có α tăng thì tg α tăng
Ta có: 50 ° 28 ' < 63 ° , suy ra tg 50 ° 28 ' < tg 63 °
Với 0 ° < α < 90 ° ta có α tăng thì cos α giảm
Ta có: 40 ° < 75 ° , suy ra cos 40 ° > cos 75 °
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)