Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A x C y z
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
A x y y y B z z C
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
đây là cậu chép trg chỗ giải đáp rồi mà mk ko đc lm giống trg giải đáp
Gọi I là giao điểm của AE và BC
Dễ thấy MA = MB = MC = ME
=> ∆AME cân
=> góc MAE = góc MEA
=> ∆ AMC cân
=> góc MAC = góc MCA
Mà ta có:
góc MEI + góc MIE = 90°
=> góc MAI + góc MIE = 90°
=> góc MAI + góc BIA = 90°
=> góc MAI + góc IAC + góc ACI = 90°
=> góc MAI + góc MAI + góc MAC + góc ACM = 90°
=> 2góc MAI + 2góc MAC = 90°
=> 2góc IAC = 90°
=> góc IAC = 45°
=> AE là phân giác của góc BAC
Xét tam giác BME và tam giác CME có:
EM: cạnh chung.
MB = MC (gt)
góc BME = góc CME = 90 độ
suy ra: tam giác BME = tam giác CME ( cgv-cgv)
Suy ra : EB=EC.
Nên: E thuộc tia phân giác của góc A.
Vậy: AE là TPG của góc BAC
nh 98): Xét ΔABC và ΔABD có:
Nên ΔABC = ΔABD (g.c.g)
- Hình 99): Ta có:
Xét ΔABD và ΔACE có:
Nên ΔABD = ΔACE ( g.c.g)
Xét ΔADC và ΔAEB có:
DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)
Nên ΔADC = ΔAEB (g.c.g)
Xem hình 98)
∆ABC và ∆ABD có:
ˆA1A1^=ˆA2A2^(gt)
AB là cạnh chung.
ˆB1B1^=ˆB2B2^(gt)
Nên ∆ABC=∆ABD(g.c.g)
Xem hình 99)
Ta có:
ˆB1B1^+ˆB2B2^=1800 (Hai góc kề bù).
ˆC1C1^+ ˆC2C2^=1800 (Hai góc kề bù)
Mà ˆB2B2^=ˆC2C2^(gt)
Nên ˆB1B1^=ˆC1C1^
* ∆ABD và ∆ACE có:
ˆB1B1^=ˆC1C1^(cmt)
BD=EC(gt)
ˆDD^ = ˆEE^(gt)
Nên ∆ABD=∆ACE(g.c.g)
* ∆ADC và ∆AEB có:
ˆDD^=ˆEE^(gt)
ˆC2C2^=ˆB2B2^(gt)
DC=EB
Nên ∆ADC=∆AEB(g.c.g)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow\hept{\begin{cases}x=-3.2=-6\\y=-3.5=-15\end{cases}}\)
\(\frac{x}{2}\)và \(\frac{y}{5}\)và \(x+y=-21\)
Đặt : \(\frac{x}{2}=\frac{y}{5}=k\)\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
Lại có : \(x+y=-21\)
Thay vào ta sẽ được :
\(2k+5k=-21\)
\(7k=-21\)
\(k=-3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{cases}}\)
Vậy ........................
Đáp án :
\(-3\notinℕ\)
\(-3\in Z\)
\(-3\in Q\)
\(\frac{-2}{3}\notin Z\)
\(\frac{-2}{3}\in Q\)
\(N\subset Z\subset Q\)
tả lời minh ko biết đánh kí hiệu nên là vậy nha
-3 ko thuộc N / -3 thuộc Z / -3 thuộc Q
-2/3 ko thuộc Q / -2/3 thuộc Q / N là tập hợp con của Z mà Z lại là tập hợp con của Q
chúc bn có 1 năm học mới vui vẻ
Bài 1:
a)\(\frac{2}{3}.\frac{5}{2}-\frac{3}{4}.\frac{2}{3}=\frac{5}{3}-\frac{1}{2}=\frac{7}{6}\)
b)\(2.\left(\frac{-3}{2}\right)^2-\frac{7}{2}=\frac{2.9}{4}-\frac{7}{2}=\frac{9-7}{2}=\frac{2}{2}=1\)
c)\(-\frac{3}{4}.\frac{68}{13}-0,75.\frac{36}{13}=\frac{-3.4.17}{4.13}-\frac{3.9.4}{4.13}=\frac{-51-27}{13}=\frac{-78}{13}=-6\)
Bài 2:
a)|x-1,4|=1,6
\(\Rightarrow\left[\begin{array}{nghiempt}x-1,4=1,6\\x-1,4=-1,6\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-0,2\end{array}\right.\)
b) \(\frac{3}{4}-x=\frac{4}{5}\)
\(x=\frac{3}{4}-\frac{4}{5}=-\frac{1}{20}\)
c)(1-2x)3=-8
(1-2x)3=(-2)3
1-2x=-2
2x=3
x=\(\frac{3}{2}\)
Bài 3:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow\begin{cases}x=2k\\y=5k\\z=7k\end{cases}\)
A=\(\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
=> x=4/5 . 2= 8/5
y=4/5 . 5=4
z=4/5.7=28/5
Kẻ Bz // Ax và Cy’ là tia đối của tia Cy
Ta có: ∠A +∠(B2 ) =180o
(2 góc trong cùng phía) (1)
Theo giả thiết ta có: ∠A +∠B + ∠C =360o (gt)
Hay ∠A +∠(B2 ) +∠(BCy) =360o (2)
Từ (1)và (2)suy ra :
∠(B1) + ∠BCy = 180o (3)
Lại có: ∠(C1 ) + ∠BCy =180o (hai góc kề bù) (4)
Từ (3) và (4) suy ra: ∠(B1 ) =∠(C1 )
Suy ra: Cy’ // Bz (vì có cặp góc so le trong bằng nhau)
Hay Cy // Bz mà Bz // Ax suy ra : Ax // Cy