Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Hai lực // cùng chiều nên:
F = F 1 + F 2 = 24 → F 2 = 6N
F1. d 1 = F 2 . d 2
↔ 18(d – d 2 ) = 6 d 2 → d 2 = 22,5 cm.
1.
theo phương pháp tổng hợp hai lực song song cùng chiều
\(F=F_1+F_2=24N\Rightarrow F_2=24-F_1=6N\) và
\(\dfrac{F_1}{F_2}=\dfrac{d_2}{d_1}\)\(\Leftrightarrow\dfrac{18}{6}=\dfrac{d_2}{30-d_2}\Rightarrow d_2=22,5cm\)
2.
. T N P -P
a)
\(sin\alpha=\dfrac{T}{P}\Rightarrow T=m.g.sin\alpha=\)24,5N
b)\(cos\alpha=\dfrac{N}{P}\Rightarrow N=\dfrac{49\sqrt{3}}{2}N\)
Chọn B.
Hai lực // cùng chiều nên: F = F1 + F2 = 24 → F2 = 6N
F1.d1 = F2.d2 ↔ 18(d – d2 ) = 6d2 → d2 = 22,5 cm.
Nếu F1=F2
do góc giữa vecto F1, F2=60o
áp dụng định lý hàm cos
F2=F12+ F22+2F1F2cos (vecto)
=> F1=0,58F
Phân tích lực F→F→ thành hai lực F1−→F1→ và F2−→F2→ theo hai phương OA và OB (hình 9.10). Giá trị nào sau đây là độ lớn của hai lực thành phần? A. F1 = F2 = F; B. F1 = F2 = 1212F; C. F1 = F2 = 1,15F; D. F1 = F2 = 0,58F. |
Bài 1:
\(\alpha= 0\) \(\Rightarrow F = F_1+F_2 = 16+12=28N\)
\(\alpha = 30^0\)\(\Rightarrow F^2=16^2+12^2+2.16.12.\cos30^0=...\Rightarrow F\)
Các trường hợp khác bạn tự tính nhé.
Bài 2:
Ta có: \(F_1=k.\Delta \ell_1=k.(0,24-0,12)=0,12.k=5\) (1)
\(F_1=k.\Delta \ell_2=k.(\ell-0,12)=10\) (2)
Lấy (2) chia (1) vế với vế: \(\dfrac{\ell-0,12}{0,12}=2\)
\(\Rightarrow \ell = 0,36m = 36cm\)
Bài 3:
Áp lực lên sàn: \(N=P=mg\)
Áp dụng định luật II Niu tơn ta có: \(F=m.a\Rightarrow -F_{ms}=ma\)
\(\Rightarrow a = \dfrac{-F_{ms}}{m}= \dfrac{-\mu.N}{m}== \dfrac{-\mu.mg}{m}=-\mu .g =- 0,1.10=-1\)(m/s2)
Quãng đường vật đi được đến khi dừng lại là \(S\)
Áp dụng công thức độc lập: \(v^2-v_0^2=2.a.S\)
\(\Rightarrow 0^2-10^2=2.1.S\Rightarrow S = 50m\)
Đáp án B
Hai lực // cùng chiều nên: F = F1 + F2 = 24 → F2 = 6N
F1.d1 = F2.d2 ↔ 18(d – d2 ) = 6d2 → d2 = 22,5 cm.