K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

Ta có: 2 x 4  +  x 2  – 3 =  x 4  + 6 x 2 + 3

⇔ 2 x 4  +  x 2  – 3 –  x 4  – 6 x 2  – 3 = 0

⇔  x 4  – 5 x 2  – 6 = 0

Đặt m =  x 2 . Điều kiện m  ≥  0

Ta có:  x 4  – 5 x 2 – 6 = 0 ⇔  m 2  – 5m – 6 = 0

 =  - 5 2  4.1.(-6) = 25 + 24 = 49 > 0

 

∆ = 49  = 7

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:  x 2 = 6 ⇒ x = ± 6

Vậy phương trình đã cho có 2 nghiệm:  x 1  =  6  ,  x 2  = - 6

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

22 tháng 6 2017

a) đặc \(x^2=t\left(t\ge0\right)\)

pt \(\Leftrightarrow\) \(t^2-8t-9=0\)

\(\Delta'=\left(-4\right)^2-1\left(-9\right)\) = \(16+9=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(t_1=\dfrac{4+\sqrt{25}}{1}=9\left(tmđk\right)\)

\(t_2=\dfrac{4-\sqrt{25}}{1}=-1\left(loại\right)\)

\(t=x^2=9\) \(\Leftrightarrow\) \(x=\pm9\)

vậy \(x=\pm9\)

20 tháng 5 2017

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

20 tháng 5 2017

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

21 tháng 6 2019

Pt a: Đk \(1< x\le6\)
\(\frac{\sqrt{6-x}-2x+3}{\sqrt{x-1}}=\sqrt{x-1}\Rightarrow\sqrt{6-x}-2x+3=x-1\)
\(\Leftrightarrow\sqrt{6-x}=3x-4\Rightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow6-x=9x^2-24x+16\Leftrightarrow9x^2-23x+10=0\)
\(\Leftrightarrow9x^2-18x-5x+10=0\Leftrightarrow9x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(9x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{9}\left(Lọai\right)\\x=2\left(Thoả\right)\end{cases}}\)
Vậy \(S=\left\{2\right\}\)
Pt b :
Đk: \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\left(x+1\right)\sqrt{x^2-4}=2x+2\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-4}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\sqrt{x^2-4}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Lọai\right)\\\sqrt{x^2-4}=2\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4}=2\Rightarrow x^2-4=4\Leftrightarrow x^2=8\Leftrightarrow x=2\sqrt{2}\left(Thoả\right)\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)

\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

Vậy............................................

\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...............................................