Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)
<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)
<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)
Phương trình trên bạn tự bấm máy tính nha
<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Đến đây tự làm đc rồi
Vậy x=1 hoặc -2 hoặc -3
b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)
<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c)Câu c mik chưa làm đc
Đáp án câu C:
\(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)
\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)
\(=\left(x-2\right)^2+1\)
\(Mà\left(x-2\right)^2\ge0\)
\(Nên\left(x-2\right)^2+1\ge1\)
\(Khiđó:x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=0\)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
(x + 2)(3 – 4x) = x 2 + 4x + 4
⇔ (x + 2)(3 – 4x) – x + 2 2 = 0
⇔ (x + 2)(3 – 4x) – (x + 2)(x + 2) = 0
⇔ (x + 2)[(3 – 4x) – (x + 2)] = 0
⇔ (x + 2)(3 – 4x – x – 2) = 0
⇔ (x + 2)(1 – 5x) = 0 ⇔ x + 2 = 0 hoặc 1 – 5x = 0
x + 2 = 0 ⇔ x = - 2
1 – 5x = 0 ⇔ x = 0,2
Vậy phương trình có nghiệm x = - 2 hoặc x = 0,2