Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-x+1< 0\)
Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.
Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.
b) f(x) = - 3x2 + x + 4 = 0
\(\Delta=1^2-4\left(-3\right).4=49\)
\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)
\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)
- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .
a) Tương đương. vì nhân hai vế bất phương trình thứ nhất với -1 và đổi chiều bất phương trình thì được bất phương trình thứ 2.
b) Chuyển vế các hạng tử vế phải và đổi dấu ở bất phương trình thứ nhất thì được bất phương trình thứ tương đương.
c) Tương đương. Vì cộng hai vế bất phương trình thứ nhất với với mọi x ta được bất phương trình thứ 3.
d) Điều kiện xác định bất phương trình thứ nhất: D ={x ≥ 1}.
2x + 1 > 0 ∀x ∈ D. Nhân hai vế bất phương trình thứ hai. Vậy bất phương trình tương đương.
a) 6x^2 -x-2>=0
\(\Delta=1+24=25\)
\(\Rightarrow\left[{}\begin{matrix}x\le\dfrac{1-5}{2.6}=\dfrac{-1}{3}\\x\ge\dfrac{1+5}{2.6}=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\dfrac{1}{3}x^2+3x+6< 0\Leftrightarrow x^2+9x+18< 0\left\{\Delta=81-4.18=9\right\}\)
\(x_1=\dfrac{-9-3}{2}=-6;x_2=\dfrac{-9+3}{2}=-3\)
\(N_0BPT:\) \(-6< x< -3\)
a)
x^2 +1 >0 mọi x
BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}
\(\Rightarrow-5< x< 2\)
b)
5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}
\(\Rightarrow-5< x< 3\)
4x2 - x + 1 < 0
Cách 1:
Xét tam thức f(x) = 4x2 - x + 1 có Δ = -15 < 0; a = 4 > 0 nên f(x) > 0 ∀x ∈ R
Vậy bất phương trình đã cho vô nghiệm.
Cách 2:
với ∀x ∈ R.
Vậy bất phương trình 4x2 – x + 1 < 0 vô nghiệm.