Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(C=2r\cdot3.14=r\cdot6.28\)
Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28
Câu 2:
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)
hay \(x_1=\dfrac{-4}{3}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)
Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)
Giải: a) Ta có: x và y là 2 đại lượng tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}\) => \(x_1=14.\frac{-3}{4}\) => \(x_1=-\frac{21}{2}\)
b) Ta có: x và y là 2 đại tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{y_1}=\frac{-4}{3}\) => \(\frac{x_1}{-4}=\frac{y_1}{3}\) và \(y_1-x_1=-2\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3+4}=-\frac{2}{7}\)
=> \(\hept{\begin{cases}\frac{x_1}{-4}=-\frac{2}{7}\\\frac{y_1}{3}=-\frac{2}{7}\end{cases}}\) => \(\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_3=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)
Vậy ...
Vì x và y là hai đại lượng tỉ lệ thuận nên
Chọn đáp án C