Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi C là giao điểm của MB với đường thẳng d.
Ta có: MB=MC+CB
mà CA=CB(tính chất đường trung trực)
Suy ra: MB=MC+CA(1)
Trong ΔMAC ta có:
MA<MC+CA(bất đẳng thức tam giác)(2)
Từ (1) và (2) suy ra: MA<MB
b.Gọi D là giao điểm của NA với đường thẳng d.
Ta có: NA=ND+DA
mà DA=DB(tính chất đường trung trực)
Suy ra: NA=ND+DB(3)
Trong ΔNDB, ta có:
NB<ND+DB (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra: NA>NB
c) Theo phần a và b; với điểm H bất kì ta có:
+ Nếu H nằm trong phần PA thì HA < HB.
+ Nếu H nằm trong phần PB thì HB < HA.
+ Nếu H nằm trên đường thẳng d thì HA = HB (tính chất đường trung trực)
Do đó, để KA < KB thì K nằm trong phần PA.
Hướng dẫn làm bài:
a) Vì M nằm trên d, d là trung trực của AB nên MA = MB (1)
Vì nên đoạn thẳng NB cắt d tại M suy ra M nằm giữa N và B.
Hay NM + MB = NB (2)
Từ (1) và (2) => NB = MA + NM
b) Gọi AN’ cắt d tại I
Trong tam giác N’IB có : N’B < IN’ + IB
Mà IA = IB (I thuộc trung trực của AB)
=> N’B < IN’ + NA => N’B < AN’
c) Vì LA < LB nên L không thuộc d, theo chứng minh câu b suy ra L thuộc PA.
a) Vì M nằm trên d, d là trung trực của AB nên MA = MB (1)
Vì nên đoạn thẳng NB cắt d tại M suy ra M nằm giữa N và B.
Hay NM + MB = NB (2)
Từ (1) và (2) => NB = MA + NM
b) Gọi AN’ cắt d tại I
Trong tam giác N’IB có : N’B < IN’ + IB
Mà IA = IB (I thuộc trung trực của AB)
=> N’B < IN’ + NA => N’B < AN’
c) Vì LA < LB nên L không thuộc d, theo chứng minh câu b suy ra L thuộc PA.
Nối NA, NB. Gọi D là giao điểm của NA với đường thẳng d, nối DB.
Ta có: NA = ND + DA
mà DA = DB (tính chất đường trung trực)
Suy ra: NA = ND + DB (3)
Trong ΔNDB, ta có:
NB < ND + DB (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra: NA > NB
tu ve hinh :
a, AE | AB va AD | AC (gt) => goc DAC = goc BAE = 90 (dn)
goc DAB + goc BAC = goc DAC
goc EAC + goc CAB = goc BAE
=> goc DAB = goc CAE
xet tamgiac BDA va tamgiac ECA co :
AD = AC (gt) va AB = AE (gt)
=> tamgiac BDA = tamgiac ECA (c - g - c)
=> BD = CE (dn)
Nối MA, MB. Gọi C là giao điểm của MB với đường thẳng d, nối CA.
Ta có: MB = MC + CB
mà CA = CB (tính chất đường trung trực)
Suy ra: MB = MC + CA (1)
Trong ΔMAC ta có:
MA < MC + CA (bất đẳng thức tam giác) (2)
Từ (1) và (2) suy ra: MA < MB