K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)

Suy ra khẳng định $a$ đúng

NV
29 tháng 2 2020

a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)

d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

1 tháng 12 2018

a) f(-\(\dfrac{1}{2}\))= - \(\dfrac{1}{2}\)+1=\(\dfrac{1}{2}\)

f(0)=0+1=1

f(-1)=-1+1=0

b) f(x)=0 <=> x+1=0 <=>x=-1

f(x)=2 <=> x+1=2 <=>x=1

c) với điểm A(\(\dfrac{3}{4}\);\(\dfrac{-1}{2}\)) thay vào hàm số ta có -2*\(\dfrac{3}{4}\)+1=\(\dfrac{-1}{2}\)=\(\dfrac{-1}{2}\)

=> điểm A có thuộc đồ thị hàm số trên

làm tương tự vs các điểm còn lại nha bạn !

1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)

Chọn đáp án đúng: Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây? A. D(3;1) B. A(1;2) C. C\(\left(1;\frac{1}{2}\right)\) D. B(2;1) Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây? A. n(m-1)2-m(n-1)2≥0 B. (m-n)2 ≥2mn C. (m+n)2 +m-n≥0 D. m2+n2≥2mn Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có: A. giá trị nhỏ nhất của m là 4 B....
Đọc tiếp

Chọn đáp án đúng:

Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây?

A. D(3;1)

B. A(1;2)

C. C\(\left(1;\frac{1}{2}\right)\)

D. B(2;1)

Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây?

A. n(m-1)2-m(n-1)2≥0

B. (m-n)2 ≥2mn

C. (m+n)2 +m-n≥0

D. m2+n2≥2mn

Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có:

A. giá trị nhỏ nhất của m là 4

B. giá trị lớn nhất của m là 4

C. giá trị lớn nhất của m là 2

D. giá trị nhỏ nhất của m là 2

Câu 4: Bpt 5x-1>\(\frac{2x}{5}+3\) có nghiệm là:

A. ∀x

B. x>\(\frac{20}{23}\)

C. x<2

D. x>-\(\frac{5}{2}\)

Câu 5: Cho nhị thức bậc nhất f(x)=23x-20. Khẳng định nào sau đây đúng?

A. f(x)>0, ∀x∈\(\left(-\infty;\frac{20}{23}\right)\)

B. f(x)>0, ∀x∈⛇

C. f(x)>0, ∀x∈\(\left(\frac{20}{23};+\infty\right)\)

D. f(x)>0, ∀x>-\(\frac{5}{2}\)

Câu 6: Điểm nào sau đây thuộc miền nghiệm của hệ bpt \(\left\{{}\begin{matrix}2x-5-1>0\\2x+y+5>0\\x+y+1< 0\end{matrix}\right.\) A. (0;-2) B. (0,0) C. (0;2) D.(1;0) Câu 7: Miền nghiệm của bất phương trình 3x+2(y+3)>4(x+1)-y+3 là phần mặt phẳng chứa điểm nào? A. (3;1) B. (0;0) C. (3;0) D. (1;1) Câu 8: Cho hệ bpt \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1\le0\end{matrix}\right.\) có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng? A. (-4;\(\sqrt{3}\))∈S B. (1;-1) ∈S C. (-1;\(\sqrt{5}\))∈S D. (1;-\(\sqrt{3}\))∈S Câu 9: Suy luận nào sau đây đúng? A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\frac{a}{b}>\frac{b}{d}\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\) C. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\) D. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) Câu 10: Cho hệ bất phương trình \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1>0\end{matrix}\right.\)có tập nghiệm là S. Khẳng định nào sau đây đúng? A. \(\left(\sqrt{2};0\right)\notin S\) B. (-1;2) ∉ S C. \(\left(\sqrt{3};0\right)\)∈S D. \(\left(1;-\sqrt{3}\right)\in S\)

1
NV
5 tháng 5 2020

Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)

Câu 2: đáp án D

\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)

Câu 3: đáp án D

\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)

Câu 4:

\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)

Câu 5:

\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C

Câu 6:

Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề

Câu 7:

\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)

\(\Leftrightarrow x-3y+1< 0\)

Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng

Câu 8:

Thay tọa độ vào chỉ đáp án D thỏa mãn

Câu 9:

Đáp án C đúng

Câu 10:

Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)

29 tháng 10 2020

a, Bảng biến thiên:

Đồ thị hàm số:

b, \(f\left(x\right)>0\Leftrightarrow x\in\left(-\infty;-3\right)\cup\left(-1;+\infty\right)\)

\(f\left(x\right)< 0\Leftrightarrow x\in\left(-3;-1\right)\)

c, Yêu cầu bài toán là gì vậy:v

d, Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\):

\(x^2+4x+3=2x+m-5\)

\(\Leftrightarrow x^2+2x+8-m=0\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt

\(\Delta'=1-\left(8-m\right)=m-7>0\Leftrightarrow m>7\)

2 tháng 4 2017

a) Tập xác định của f(x) :

A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}

- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0

Theo định lí dấu của tam thức:

x2 + 3x + 4 ≥ 0 ∀x ∈R

-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5

-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]

b) A/B = [3, 4]

R\(A\B) = (-∞, 3) ∪ (4, +∞)