Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P và P + 14 là số nguyên tố => P là số lẻ . Vì nếu P chẵn thì P = 2, P + 14 = 16 \((\text{là hợp số }\Rightarrow\text{vô lí})\)
P + 7 = lẻ + lẻ = chẵn => P + 7 là hợp số
Tk mk nhé
Ta có P là số nguyên tố => p lẻ và 7 lẻ => p + 7 = lẻ + lẻ = chẵn chia hết cho 2 và p + 7 > 2
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM
a) S chia het cho 5 hien nhien => S la hop so
b)4.S=(5^2017-5)
5^2017 hai so cuoi la 25
(5^2017-5 hai so cuoi tan cung 20 kho chinh phuomg=> s ko chinh phuong
c) kq cau (b)=> x=1
d)4.s+1=5^2017-5+1=5^n
5^n+4=5^2017 vo nghiem nguyen
1/
a/ Hai số nguyên liên tiếp bao giờ cũng có 1 số chẵn và 1 số lẻ nên 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn chia hết cho 2
b/ Gọi 3 số nguyên liên tiếp là n; n+1, n+2
+ Nếu n chia hết cho 3 thì n+1 chia 3 dư 1 và n+2 chia 3 dư 2
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 còn n+1 chia 3 dư 2
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 còn n+2 chia 3 dư 1
Nên trong 3 số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c/ Trong 2 số nguyên liên tiếp chỉ có 1 số duy nhất chia hết cho 2. Trong 3 số nguyên liên tiếp chỉ có duy nhất 1 số chia hết cho 3 nên tích của chúng chia hết cho 6
2
a/ a-b chia hết cho 5
=> a-b-5b có a-b chia hết cho 5 và 5b chia hết cho 5 nên a-b-5b=a-6b chia hết cho 5
b/ Ta có a-6b+a-b có a-6b chia hết cho 5 (câu a) và a-b chia hết cho 5 (đề bài) nên a-6b+a-b=2a-7b chia hết cho 5
c/ Ta có (a-b)+(25a-15b+2000) có a-b chia hết cho 5 (đề bài) và 25a-15b+2000 chia hết cho 5 nên a-b+25a-15b+2000=26a-21b+2000 chia hết cho 5
a)\(n+7⋮n+2\)
\(\Rightarrow\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy \(n\in\left\{-1;-3;3;-7\right\}\)
b)\(9-n⋮n-3\)
\(\Rightarrow6-\left(n-3\right)\)
\(\Rightarrow6⋮n-3\)
\(\Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
nếu n-3=1 thì n=4
nếu n-3=-1 thì n=2
nếu n-3=2 thì n=5
nếu n-3=-2 thì n=1
nếu n-3=3 thì n=6
nếu n-3=-3 thì n=0
nếu n-3=6 thì n=9
nếu n-3=-6 thì n=-3
Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
c)\(n^2+n+17⋮n+1\)
\(\Rightarrow n\left(n+1\right)+17⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
nếu n+1=1 thì n=0
nếu n+1=-1 thì n=-2
nếu n+1=17 thì n=16
nếu n+1=-17 thì n=-18
Vậy \(n\in\left\{0;-2;16;-18\right\}\)