K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

NV
15 tháng 4 2020

\(\left\{{}\begin{matrix}AO\perp OB\\AO\perp OC\end{matrix}\right.\) \(\Rightarrow AO\perp\left(ABC\right)\Rightarrow OA\perp BC\)

\(OH\perp\left(ABC\right)\Rightarrow OH\perp BC\)

\(\Rightarrow BC\perp\left(OAH\right)\)

b/ \(BC\perp\left(OAH\right)\Rightarrow BC\perp AH\Rightarrow AH\) là 1 đường cao trong tam giác ABC

Chứng minh tương tự câu a ta có\(AC\perp\left(OBH\right)\Rightarrow AC\perp BH\Rightarrow BH\) cùng là 1 đường cao

\(\Rightarrow H\) là trực tâm tam giác ABC

c/ Gọi M là giao điểm AH và BC \(\Rightarrow AM\perp BC\)

Áp dụng hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OM^2}\) (2)

\(BC\perp\left(OAH\right)\Rightarrow BC\perp OM\Rightarrow OM\) là đường cao ứng với cạnh huyền trong tam giác vuông OBC

Áp dụng hệ thức lượng: \(\frac{1}{OM^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\) (3)

(2);(3) \(\Rightarrow\) đpcm

d/ \(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{OA^2+OB^2+OA^2+OC^2-\left(OB^2+OC^2\right)}{2AB.AC}=\frac{OA^2}{AB.AC}>0\)

\(\Rightarrow A\) là góc nhọn

Tương tự ta có: \(cosB=\frac{OB^2}{AB.BC}>0\) ; \(cosC=\frac{OC^2}{AC.BC}>0\) nên B, C đều nhọn

Vậy ABC là tam giác nhọn

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

18 tháng 1 2022

A B C D M N P Q

a/ Trong mp (BCD) dựng đường thẳng // với CD cắt BD tại P => CD//NP (1)

=> mp (MNP) là mp \(\alpha\)

Trong mp (ACD) từ M dựng đường thẳng //CD cắt AC tại Q => CD//MQ (2)

Từ (1) và (2) => NP//MQ => MPNQ là thiết diện của tứ diện ABCD với mp \(\alpha\)

b/

Xét tg ACD có

MQ//CD và MA=MD => QA=QC (trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại của tam giác => MQ là đường trung bình của tg ACD \(\Rightarrow MQ=\frac{CD}{2}\)

Ta có MQ//NP để MPNQ là hình bình hành thì \(MQ=NP=\frac{CD}{2}\) (tứ giác có 1 cặp cạnh đối // và = nhau thì tứ giác là hbh)

=> NP là đường trung bình của tg BCD => N là trung điểm của BC

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11