K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai tam giác vuông HCD và DCM đồng dạng (có cùng góc nhọn tại C) mà

∆ DCM ∼  ∆ ABM (vì là hai tam giác vuông có ∠ (DMC) =  ∠ (AMB), vậy  ∆ HCD ∼  ∆ ABM. Khẳng định a) là đúng.

18 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo câu a), từ AB = 2AM, suy ra HC = 2HD. Ta có HC < MC (h là chân đường cao hạ từ D của tam giác DCM vuông tại D) nên HC = 2HD < MC = AM < AH (do M nằm giữa A và H), vì thế 2HD không thể bằng AH. Khẳng định b) là sai.

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

29 tháng 10 2022

a: Xét ΔHCD vuông tại H và ΔABM vuông tại A có

góc HCD=góc ABM

Do đó: ΔHCD đồng dạng với ΔABM

b: Khẳng định này sai

18 tháng 12 2016

. A B O H C d

a) VÌ: \(OC\perp EF\left(gt\right)\)

\(AE\perp EF\left(gt\right)\)

=> OC//AE

=> \(\widehat{EAC}=\widehat{OCA}\) ( cặp góc sole trong) (1)
Vì: OC=OA(gt)

=> ΔOAC cân tại O

=> \(\widehat{OCA}=\widehat{OAC}\) (2)

Từ (1);(2) suy ra:

\(\widehat{EAC}=\widehat{OAC}\)

=>AC là tia pg của \(\widehat{BAE}\)

b)Chứng minh tương tự như câu a ta có: \(\widehat{OBC}=\widehat{FBC}\)

Xét ΔAEC và ΔAHC có:

\(\widehat{AEC}=\widehat{AHC}=90^o\)

AC:cạnh chung

\(\widehat{EAC}=\widehat{HAC}\left(cmt\right)\)

=>ΔAEC=ΔAHC ( cạnh huyền -góc nhọn)

=>AE=AH

Xét ΔCHB và ΔCFB có:

\(\widehat{CHB}=\widehat{CFB}=90^o\)

BC:cạnh chung

\(\widehat{HBC}=\widehat{FBC}\left(cmt\right)\)

=> ΔCHB=ΔCFB(ch-gn)

=> BF=HB

Xét ΔABC có: OA=OB=OC

=> ΔABC cân tại C

=> \(CH^2=AH\cdot BH\)

Hay: \(CH^2=AE\cdot BF\)

18 tháng 12 2016

Dễ mà!

Câu a): \(\widehat{ECA}=\widehat{CBH}=\widehat{ACH}\) nên \(\widehat{EAC}=\widehat{HAC}\).

Câu b): Từ câu a) CM được tam giác \(ECA\) và \(HCA\) là bằng nhau, tức là \(EA=HA\)

Tương tự, \(FB=HB\) nên \(BF.AE=AH.BH=CH^2\)

13 tháng 10 2019

d A O H B C

a ) Vì \(OC\perp EF\left(gt\right)\)

\(AE\perp EF\left(gt\right)\)

\(\Rightarrow OC//AE\)

\(\Rightarrow\widehat{EAC}=\widehat{OCA}\) ( cặp góc so le trong ) (1)
Vì : OC = OA ( gt)

\(\Rightarrow\Delta OAC\) cận tại O

\(\Rightarrow\widehat{OCA}=\widehat{OAC}\left(2\right)\)

Từ (1) và (2) suy ra :
\(\widehat{EAC}=\widehat{OAC}\)

\(\Rightarrow\) AC là tia phân giác của \(\widehat{BAE}\)

b ) Chứng minh tương tự như câu a ta có :

\(\widehat{OBC}=\widehat{FBC}\)

Xét \(\Delta AEC\) và \(\Delta AHC\) có :

\(\widehat{AEC}=\widehat{AHC}=90^o\)

AC : cạnh chung 

\(\widehat{EAC}=\widehat{HAC}\left(cmt\right)\)

\(\Rightarrow\Delta AEC=\Delta AHC\) ( cạnh huyền - góc nhọn )
\(\Rightarrow AE=AH\)

Xét \(\Delta CHB\) và \(\Delta CFB\) có :

\(\widehat{CHB}=\widehat{CFB}=90^o\)

BC : cạnh chung 

\(\widehat{HBC}=\widehat{FBC}\left(cmt\right)\)

\(\Rightarrow\Delta CHB=\Delta CFB\left(ch-gn\right)\)

\(\Rightarrow BF=HB\)

Xét : tam giác ABC có : OA = OB =OC 

\(\Rightarrow\Delta ABC\) cân tại C

\(\Rightarrow CH^2=AH.BH\)

Hay \(CH^2=AE.BF\)

Chúc bạn học tốt !!!

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn