K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).


Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
15 tháng 5 2017

A B C M N K
Theo các xác định điểm M, N ta có:
\(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB};\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.\)
Theo tính chất trung điểm của MN ta có:
\(\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\).

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

19 tháng 11 2019

A B C M E N F P D

Gọi AD là phân giác trong của \(\Delta\)ABC. Kéo dài DM cắt BE và CA lần lượt tại N và F, AN cắt BC tại P.

Dễ thấy \(\Delta\)ADB cân tại D có trung tuyến DM, suy ra DM là trung trực của AB

Do vậy ^DAN = ^DBN = 90o suy ra AP vuông góc AD hay AP là phân giác ngoài của \(\Delta\)ABC

Từ đó \(\left(BCPD\right)=-1\). Áp dụng phép chiếu xuyên tâm N: \(\left(BCPD\right)\rightarrow\left(ECFA\right)\)

Khi đó (ECFA) là hàng điều hòa. Mà ^AMF = 90o nên MA chính là phân giác của ^CME (đpcm).

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

8 tháng 8 2019

Câu 1.

I là trung điểm của AM \(\Rightarrow\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AM}\)

M là trung điểm của BC \(\Rightarrow\) \(\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{AI}=\frac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 2.

Ta có: \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MA}-\overrightarrow{MC}\)

\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Rightarrow\) M là trọng tâm của tam giác ABC.

\(\Rightarrow\) D đúng.

8 tháng 8 2019

Câu 1:

Theo quy tắc TĐ ta có:

\(\overrightarrow{AM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\overrightarrow{AI}=\frac{\overrightarrow{AM}}{2}\Rightarrow\overrightarrow{AI}=\frac{\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{4}\)

Câu 2:

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{CA}\Rightarrow\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MA}=0\)

Vậy M là trọng tâm tam giác ABC (D)

Câu 3 sai đề, phải là \(\overrightarrow{BC}=m.\overrightarrow{a}+n.\overrightarrow{b}\) ms đúng chứ?

Câu 4 để mai ik, dài lắm :))

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

19 tháng 5 2017

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).