K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a.Xét  TG ANHM có Góc A = N = M

=> TG ANHM là HCN => góc AMN =AHN (1)

Xét tam giác AHN và ABC ta có N = H = 90; AMN = AH (cm trên)

=> AHN đ dạng ABC => AHN =ACH (2) Từ 1 và 2 => AMN =ACH

=> t giác anm đ d TG ABC (g_g) 

=> AN/AB=AM/AC  <=> AN.AC=AM.AB (ĐCCM)

b.Ta có TG ABC vuông tị A => HB.HC =AH2

MA.MB = MH^2 ; AN.CN = NH ^2

Mà NH^2 + MH^2 = MN ^2  ;MN = AH ( theo tính chất hình chữ nhật)

=> MA.MB+NA.NC = HB.HC (đccm)

c. (AB/AC)^2 = AB^2/AC^2 

Theo hệ thức lượng của tam giác vuông ta có

AB^2/AC^2= BH.BC/CH.BC=BH/CH ( đccm)

Bạn không phải lớp 9 hã

Nếu là lớp 9 thì bài này khá dễ 

25 tháng 5 2017

mk bây giờ mới bắt đầu học nè

18 tháng 6 2019

https://hoc24.vn/hoi-dap/question/821311.html link đây nhé! Bài này mk giải roy

21 tháng 6 2019

link như cc

2 tháng 7 2021

A B C H D E

a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)

Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)

b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)

Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)

Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC

Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)

26 tháng 6 2018

b) Tứ giác ADHE là hình chữ nhật (tự chứng minh nhé)

⇒DE=AH⇒DE3=AH3
AH5=AH4.AH=BH2.CH2.AH=BD.BA.CE.CA.AH=BD.CE.AH.BC.AH=BD.CE.BC.AH2

⇒AH3=BD.CE.BC⇔DE3=BD.CE.BC(dpcm)

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

16 tháng 6 2019

sai đề

16 tháng 6 2019

câu a hình như sai đề rùi bn ạ

b/ có \(HB=\frac{AB^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\left(\frac{AB}{AC}\right)^2\)