K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Ta có: DE // BC (gt)

⇒∠(D1 ) =∠B (đồng vị) (1)

Do EF // AB (gt)

⇒∠(F1 ) =∠B (đồng vị) (2)

Từ (1) và (2) suy ra: ∠(D1 ) =∠F1

Xét Δ ADE và Δ EFC, ta có:

∠A =∠(E1 ) (hai góc đồng vị, EF// AB)

AD = EF ( chứng minh a)

∠(D1 ) =∠(F1 ) (chứng minh trên)

Suy ra : Δ ADE = Δ EFC(g.c.g)

31 tháng 7 2017

A B C D E F

* Xét tam giác BDE và tam giác EFB có:

+) \widehat{DEB} = \widehat{EBF} ( so le trong)

+) BE chung

+) \widehat{FEB} = \widehat{DBE} ( so le trong)

=> Tam giác BDE = tam giác EFB ( g.c.g )

=> EF = BD ( 2 cạnh tương ứng)

* Mà AD = BD ( D là trung điểm của AB)

=> EF = AD. ( cpcm)

2 tháng 3 2018

Em tham khảo tại đây nhé.

Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath

30 tháng 11 2019

giải hộ tớ bài ở trên

4 tháng 12 2019

Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath

28 tháng 12 2015

CHTT nha Nguyễn Đào Hà Nhi

5 tháng 8 2022

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :

a) AD = EF

b)  Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE

D với F. Xét ΔBDF và ΔFDE ta có:

ˆBDF=^DFE (so le trong (Vì AB//EF (gt))

DF cạnh chung

ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))

⇒ΔBDF=ΔFDE (g.c.g)

⇒DB=EF (2 cạnh tương ứng )

Mà DB=DA (D là trung điểm AB)

Suy ra AD=EF

b)Xét ΔADE và ΔEFC ta có:

ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)

AD=EF (cmt)

ˆDAE=ˆFEC(đồng vị của DE//BC)

⇒ΔADE=ΔEFC (g.c.g)

c)Vì ΔADE=ΔEFC (cmt)

Suy ra AE=EC (2 cạnh tương ứng )

HT

21 tháng 10 2016
a,Xét tam giác CEF và tam giác FBD co

DF la canh chung

góc EDF = góc DFB ( 2 góc so le trong của DE//BC)

góc BDF = Góc EDF( 2 góc so le trong của EF//AB)

=> tam giác CEF= tam giác FBD (g.c.g)

=>EF = DB ( 2 cạnh tương ứng)

mà BD= AD ( D la trung diem cua AB)

=> EF= AD(dpm)

b, ta có
  • goc BDF + goc FDE + gocEDA=180
  • goc BFD + goc DFE+goc EFC=180

mà goc BDF=goc EFD (chứng minh trên: cmt)

goc FDE= goc DBF (cmt)

=> goc EDA= goc EFC

Xét tam giác ADE và tam giác EFC có

EF=AD(cmt))

góc EDA = EFC ( cmt)

góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)

=> tam giác ADE = tam giác EFC ( dpcm)

c, Vi tam giác ADE= tam giác EFC

=> AE=EC( 2 cạnh tương ứng)